142 resultados para electrical robustness
Resumo:
This paper describes some new wireless sensor hardware developed for pastoral and environmental applications. From our early experiments with Mote hardware we were inspired to develop our devices with improved radio range, solar power capability, mechanical and electrical robustness, and with unique combinations of sensors. Here we describe the design and evolution of a small family of devices: radio/processor board, a soil moisture sensor interface, and a single board multi-sensor unit for animal tracking experiments.
Resumo:
A Positive Buck- Boost (PBB) converter is a known DC-DC converter that can operate in step up and step down modes. Unlike Buck, Boost, and Inverting Buck Boost converters, the inductor current of a PBB can be controlled independently of its voltage conversion ratio. In other words, the inductor of PBB can be utilised as an energy storage unit in addition to its main function of energy transfer. In this paper, the capability of PBB to store energy has been utilised to achieve robustness against input voltage fluctuations and output current changes. The control strategy has been developed to keep accuracy, affordability, and simplicity acceptable. To improve the efficiency of the system a Smart Load Controller (SLC) has been suggested. Applying SLC extra current storage occurs when there is sudden loads change otherwise little extra current is stored.
Resumo:
In most of the digital image watermarking schemes, it becomes a common practice to address security in terms of robustness, which is basically a norm in cryptography. Such consideration in developing and evaluation of a watermarking scheme may severely affect the performance and render the scheme ultimately unusable. This paper provides an explicit theoretical analysis towards watermarking security and robustness in figuring out the exact problem status from the literature. With the necessary hypotheses and analyses from technical perspective, we demonstrate the fundamental realization of the problem. Finally, some necessary recommendations are made for complete assessment of watermarking security and robustness.
Resumo:
Communicating the mining industry’s water use is fundamental to maintaining its social license to operate but the majority of corporate reporting schemes list indicators. The Minerals Council of Australia’s Water Accounting Framework was designed to assist the minerals industry obtain consistency in its accounting method and in the definitions of terms used in water reporting. The significance of this paper is that it shows that the framework has been designed to be sufficiently robust to describe any mining/mineral related operation. The Water Accounting Framework was applied across four operations over three countries producing four commodities. The advantages of the framework were then evident through the presentation of the reports. The contextual statement of the framework was able to explain contrasting reuse efficiencies. The Input-Output statements showed that evaporation was a significant loss for most of the operations in the study which highlights a weakness of reporting schemes that focus on discharge volumes. The framework method promotes data reconciliation which proved the presence of flows that two operations in the study had neglected to provide. Whilst there are many advantages of the framework, the major points are that the reporting statements of the framework, when presented together, can better enable the public to understand water interactions at a site-level and allows for valid comparisons between sites, regardless of locale and commodity. With mining being a global industry, these advantages are best realised if there was international adoption of the framework.
Resumo:
Active learning approaches reduce the annotation cost required by traditional supervised approaches to reach the same effectiveness by actively selecting informative instances during the learning phase. However, effectiveness and robustness of the learnt models are influenced by a number of factors. In this paper we investigate the factors that affect the effectiveness, more specifically in terms of stability and robustness, of active learning models built using conditional random fields (CRFs) for information extraction applications. Stability, defined as a small variation of performance when small variation of the training data or a small variation of the parameters occur, is a major issue for machine learning models, but even more so in the active learning framework which aims to minimise the amount of training data required. The factors we investigate are a) the choice of incremental vs. standard active learning, b) the feature set used as a representation of the text (i.e., morphological features, syntactic features, or semantic features) and c) Gaussian prior variance as one of the important CRFs parameters. Our empirical findings show that incremental learning and the Gaussian prior variance lead to more stable and robust models across iterations. Our study also demonstrates that orthographical, morphological and contextual features as a group of basic features play an important role in learning effective models across all iterations.
Resumo:
An asset registry arguably forms the core system that needs to be in place before other systems can operate or interoperate. Most systems have rudimentary asset registry functionality that store assets, relationships, or characteristics, and this leads to different asset management systems storing similar sets of data in multiple locations in an organisation. As organisations have been slowly moving their information architecture toward a service-oriented architecture, they have also been consolidating their multiple data stores, to form a “single point of truth”. As part of a strategy to integrate several asset management systems in an Australian railway organisation, a case study for developing a consolidated asset registry was conducted. A decision was made to use the MIMOSA OSA-EAI CRIS data model as well as the OSA-EAI Reference Data in building the platform due to the standard’s relative maturity and completeness. A pilot study of electrical traction equipment was selected, and the data sources feeding into the asset registry were primarily diagrammatic based. This paper presents the pitfalls encountered, approaches taken, and lessons learned during the development of the asset registry.
Resumo:
The traditional means for isolating applications from each other is via the use of operating system provided “process” abstraction facilities. However, as applications now consist of multiple fine-grained components, the traditional process abstraction model is proving to be insufficient in ensuring this isolation. Statistics indicate that a high percentage of software failure occurs due to propagation of component failures. These observations are further bolstered by the attempts by modern Internet browser application developers, for example, to adopt multi-process architectures in order to increase robustness. Therefore, a fresh look at the available options for isolating program components is necessary and this paper provides an overview of previous and current research on the area.
Resumo:
Survey-based health research is in a boom phase following an increased amount of health spending in OECD countries and the interest in ageing. A general characteristic of survey-based health research is its diversity. Different studies are based on different health questions in different datasets; they use different statistical techniques; they differ in whether they approach health from an ordinal or cardinal perspective; and they differ in whether they measure short-term or long-term effects. The question in this paper is simple: do these differences matter for the findings? We investigate the effects of life-style choices (drinking, smoking, exercise) and income on six measures of health in the US Health and Retirement Study (HRS) between 1992 and 2002: (1) self-assessed general health status, (2) problems with undertaking daily tasks and chores, (3) mental health indicators, (4) BMI, (5) the presence of serious long-term health conditions, and (6) mortality. We compare ordinal models with cardinal models; we compare models with fixed effects to models without fixed-effects; and we compare short-term effects to long-term effects. We find considerable variation in the impact of different determinants on our chosen health outcome measures; we find that it matters whether ordinality or cardinality is assumed; we find substantial differences between estimates that account for fixed effects versus those that do not; and we find that short-run and long-run effects differ greatly. All this implies that health is an even more complicated notion than hitherto thought, defying generalizations from one measure to the others or one methodology to another.