454 resultados para dynamic storage allocation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Target date retirement funds have gained favor with retirement plan investors in recent years. Typically, these funds initially have a high allocation to stocks but move towards less volatile assets, such as bonds and cash, as the target retirement date approaches. Empirical research has generally found that a switch to low-risk assets prior to retirement can reduce the risk of confronting the most extreme negative outcomes. This article questions the rationale for lifecycle switching based solely on age or target retirement date as is the prevalent practice among target date funds. The authors argue that a dynamic switching strategy, which takes into consideration achieved investment returns, will produce superior returns for most investors compared to conventional lifecycle switching. In this article, the authors put forward a dynamic lifecycle switching strategy that is conditional on the attainment of the plan member's wealth accumulation objective at every stage of switching.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conifers are resistant to attack from a large number of potential herbivores or pathogens. Previous molecular and biochemical characterization of selected conifer defence systems support a model of multigenic, constitutive and induced defences that act on invading insects via physical, chemical, biochemical or ecological (multitrophic) mechanisms. However, the genomic foundation of the complex defence and resistance mechanisms of conifers is largely unknown. As part of a genomics strategy to characterize inducible defences and possible resistance mechanisms of conifers against insect herbivory, we developed a cDNA microarray building upon a new spruce (Picea spp.) expressed sequence tag resource. This first-generation spruce cDNA microarray contains 9720 cDNA elements representing c. 5500 unique genes. We used this array to monitor gene expression in Sitka spruce (Picea sitchensis) bark in response to herbivory by white pine weevils (Pissodes strobi, Curculionidae) or wounding, and in young shoot tips in response to western spruce budworm (Choristoneura occidentalis, Lepidopterae) feeding. Weevils are stem-boring insects that feed on phloem, while budworms are foliage feeding larvae that consume needles and young shoot tips. Both insect species and wounding treatment caused substantial changes of the host plant transcriptome detected in each case by differential gene expression of several thousand array elements at 1 or 2 d after the onset of treatment. Overall, there was considerable overlap among differentially expressed gene sets from these three stress treatments. Functional classification of the induced transcripts revealed genes with roles in general plant defence, octadecanoid and ethylene signalling, transport, secondary metabolism, and transcriptional regulation. Several genes involved in primary metabolic processes such as photosynthesis were down-regulated upon insect feeding or wounding, fitting with the concept of dynamic resource allocation in plant defence. Refined expression analysis using gene-specific primers and real-time PCR for selected transcripts was in agreement with microarray results for most genes tested. This study provides the first large-scale survey of insect-induced defence transcripts in a gymnosperm and provides a platform for functional investigation of plant-insect interactions in spruce. Induction of spruce genes of octadecanoid and ethylene signalling, terpenoid biosynthesis, and phenolic secondary metabolism are discussed in more detail.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Computer resource allocation represents a significant challenge particularly for multiprocessor systems, which consist of shared computing resources to be allocated among co-runner processes and threads. While an efficient resource allocation would result in a highly efficient and stable overall multiprocessor system and individual thread performance, ineffective poor resource allocation causes significant performance bottlenecks even for the system with high computing resources. This thesis proposes a cache aware adaptive closed loop scheduling framework as an efficient resource allocation strategy for the highly dynamic resource management problem, which requires instant estimation of highly uncertain and unpredictable resource patterns. Many different approaches to this highly dynamic resource allocation problem have been developed but neither the dynamic nature nor the time-varying and uncertain characteristics of the resource allocation problem is well considered. These approaches facilitate either static and dynamic optimization methods or advanced scheduling algorithms such as the Proportional Fair (PFair) scheduling algorithm. Some of these approaches, which consider the dynamic nature of multiprocessor systems, apply only a basic closed loop system; hence, they fail to take the time-varying and uncertainty of the system into account. Therefore, further research into the multiprocessor resource allocation is required. Our closed loop cache aware adaptive scheduling framework takes the resource availability and the resource usage patterns into account by measuring time-varying factors such as cache miss counts, stalls and instruction counts. More specifically, the cache usage pattern of the thread is identified using QR recursive least square algorithm (RLS) and cache miss count time series statistics. For the identified cache resource dynamics, our closed loop cache aware adaptive scheduling framework enforces instruction fairness for the threads. Fairness in the context of our research project is defined as a resource allocation equity, which reduces corunner thread dependence in a shared resource environment. In this way, instruction count degradation due to shared cache resource conflicts is overcome. In this respect, our closed loop cache aware adaptive scheduling framework contributes to the research field in two major and three minor aspects. The two major contributions lead to the cache aware scheduling system. The first major contribution is the development of the execution fairness algorithm, which degrades the co-runner cache impact on the thread performance. The second contribution is the development of relevant mathematical models, such as thread execution pattern and cache access pattern models, which in fact formulate the execution fairness algorithm in terms of mathematical quantities. Following the development of the cache aware scheduling system, our adaptive self-tuning control framework is constructed to add an adaptive closed loop aspect to the cache aware scheduling system. This control framework in fact consists of two main components: the parameter estimator, and the controller design module. The first minor contribution is the development of the parameter estimators; the QR Recursive Least Square(RLS) algorithm is applied into our closed loop cache aware adaptive scheduling framework to estimate highly uncertain and time-varying cache resource patterns of threads. The second minor contribution is the designing of a controller design module; the algebraic controller design algorithm, Pole Placement, is utilized to design the relevant controller, which is able to provide desired timevarying control action. The adaptive self-tuning control framework and cache aware scheduling system in fact constitute our final framework, closed loop cache aware adaptive scheduling framework. The third minor contribution is to validate this cache aware adaptive closed loop scheduling framework efficiency in overwhelming the co-runner cache dependency. The timeseries statistical counters are developed for M-Sim Multi-Core Simulator; and the theoretical findings and mathematical formulations are applied as MATLAB m-file software codes. In this way, the overall framework is tested and experiment outcomes are analyzed. According to our experiment outcomes, it is concluded that our closed loop cache aware adaptive scheduling framework successfully drives co-runner cache dependent thread instruction count to co-runner independent instruction count with an error margin up to 25% in case cache is highly utilized. In addition, thread cache access pattern is also estimated with 75% accuracy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cloud Computing, based on early virtual computer concepts and technologies, is now itself a maturing technology in the marketplace and it has revolutionized the IT industry, being the powerful platform that many businesses are choosing to migrate their in-premises IT services onto. Cloud solution has the potential to reduce the capital and operational expenses associated with deploying IT services on their own. In this study, we have implemented our own private cloud solution, infrastructure as a service (IaaS), using the OpenStack platform with high availability and a dynamic resource allocation mechanism. Besides, we have hosted unified communication as a service (UCaaS) in the underlying IaaS and successfully tested voice over IP (VoIP), video conferencing, voice mail and instant messaging (IM) with clients located at the remote site. The proposed solution has been developed in order to give advice to bussinesses that want to build their own cloud environment, IaaS and host cloud services and applicatons in the cloud. This paper also aims at providing an alternate option for proprietary cloud solutions for service providers to consider.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a design technique of a fully regenerative dynamic dynamometer. It incorporates an energy storage system to absorb the energy variation due to dynamometer transients. This allows the minimum power electronics requirement at the grid to supply the losses. The simulation results of the full system over a driving cycle show the amount of energy required to complete a driving cycle, therefore the size of the energy storage system can be determined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we address the control design problem of positioning of over-actuated marine vehicles with control allocation. The proposed design is based on a combined position and velocity loops in a multi-variable anti-windup implementation together with a control allocation mapping. The vehicle modelling is considered with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. We derive analytical tuning rules based on requirements of closed-loop stability and performance. The anti- windup implementation of the controller is obtained by mapping the actuator-force constraint set into a constraint set for the generalized forces. This approach ensures that actuation capacity is not violated by constraining the generalized control forces; thus, the control allocation is simplified since it can be formulated as an unconstrained problem. The mapping can also be modified on-line based on actuator availability to provide actuator-failure accommodation. We provide a proof of the closed-loop stability and illustrate the performance using simulation scenarios for an open-frame underwater vehicle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a framework for the design of a joint motion controller and a control allocation strategy for dynamic positioning of marine vehicles. The key aspects of the proposed designs are a systematic approach to deal with actuator saturation and to inform the motion controller about saturation. The proposed system uses a mapping that translates the actuator constraint sets into constraint sets at the motion controller level. Hence, while the motion controller addresses the constraints, the control allocation algorithm can solve an unconstrained optimisation problem. The constrained control design is approached using a multivariable anti-wind-up strategy for strictly proper controllers. This is applicable to the implementation of PI and PID type of motion controllers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For a multiarmed bandit problem with exponential discounting the optimal allocation rule is defined by a dynamic allocation index defined for each arm on its space. The index for an arm is equal to the expected immediate reward from the arm, with an upward adjustment reflecting any uncertainty about the prospects of obtaining rewards from the arm, and the possibilities of resolving those uncertainties by selecting that arm. Thus the learning component of the index is defined to be the difference between the index and the expected immediate reward. For two arms with the same expected immediate reward the learning component should be larger for the arm for which the reward rate is more uncertain. This is shown to be true for arms based on independent samples from a fixed distribution with an unknown parameter in the cases of Bernoulli and normal distributions, and similar results are obtained in other cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dynamic and uncertain environments, where the needs of security and information availability are difficult to balance, an access control approach based on a static policy will be suboptimal regardless of how comprehensive it is. Risk-based approaches to access control attempt to address this problem by allocating a limited budget to users, through which they pay for the exceptions deemed necessary. So far the primary focus has been on how to incorporate the notion of budget into access control rather than what or if there is an optimal amount of budget to allocate to users. In this paper we discuss the problems that arise from a sub-optimal allocation of budget and introduce a generalised characterisation of an optimal budget allocation function that maximises organisations expected benefit in the presence of self-interested employees and costly audit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In extreme weather conditions, thrusters on ships and rigs may be subject to severe thrust losses caused by ventilation and in-and-out-of-water events. When a thruster ventilates, air is sucked down from the surface and into the propeller. In more severe cases, parts of or even the whole propeller can be out of the water. These losses vary rapidly with time and cause increased wear and tear in addition to reduced thruster performance. In this paper, a thrust allocation strategy is proposed to reduce the effects of thrust losses and to reduce the possibility of multiple ventilation events. This thrust allocation strategy is named antispin thrust allocation, based on the analogous behavior of antispin wheel control of cars. The proposed thrust allocation strategy is important for improving the life span of the propulsion system and the accuracy of positioning for vessels conducting station keeping in terms of dynamic positioning or thruster-assisted position mooring. Application of this strategy can result in an increase of operational time and, thus, increased profitability. The performance of the proposed allocation strategy is demonstrated with experiments on a model ship.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we address the control design problem of positioning of over-actuated underwater vehicles. The proposed design is based on a control architecture with combined position and velocity loops and a control tuning method based on the decoupled models. We derive analytical tuning rules based on requirements of closed-loop stability, positioning performance, and the vehicle velocity dynamic characteristics. The vehicle modelling is considered from force to motion with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. This approach makes the control tuning independent of the characteristics of the force actuators and provides the basis for control reconfiguration in the presence of actuator failure. We propose an anti-wind-up implementation of the controller, which ensures that the constraints related to actuation capacity are not violated. This approach simplifies the control allocation problem since the actuator constraints are mapped into generalised force constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a wind energy conversion system interfaced to the grid using a dual inverter is proposed. One of the two inverters in the dual inverter is connected to the rectified output of the wind generator while the other is directly connected to a battery energy storage system (BESS). This approach eliminates the need for an additional dc-dc converter and thus reduces power losses, cost, and complexity. The main issue with this scheme is uncorrelated dynamic changes in dc-link voltages that results in unevenly distributed space vectors. A detailed analysis on the effects of these variations is presented in this paper. Furthermore, a modified modulation technique is proposed to produce undistorted currents even in the presence of unevenly distributed and dynamically changing space vectors. An analysis on the battery charging/discharging process and maximum power point tracking of the wind turbine generator is also presented. Simulation and experimental results are presented to verify the efficacy of the proposed modulation technique and battery charging/discharging process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Battery-supercapacitor hybrid energy storage systems are becoming popular in the renewable energy sector due to their improved power and energy performances. These hybrid systems require separate dc-dc converters, or at least one dc-dc converter for the supercapacitor bank, to connect them to the dc-link of the grid interfacing inverter. These additional dc-dc converters increase power losses, complexity and cost. Therefore, possibility of their direct connection is investigated in this paper. The inverter system used in this study is formed by cascading two 3-level inverters, named as the “main inverter” and the “auxiliary inverter”, through a coupling transformer. In the test system the main inverter is connected with the rectified output of a wind generator while the auxiliary inverter is directly attached to a battery and a supercapacitor bank. The major issues with this approach are the dynamic changes in dc-link voltages and inevitable imbalances in the auxiliary inverter voltages, which results in unevenly distributed space vectors. A modified SVM technique is proposed to solve this issue. A PWM based time sharing method is proposed for power sharing between the battery and the supercapacitor. Simulation results are presented to verify the efficacy of the proposed modulation and control techniques.