116 resultados para discontinuous Galerkin method, numerical analysis, meteorology, weather prediction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Condensation technique of degree of freedom is first proposed to improve the computational efficiency of meshfree method with Galerkin weak form for elastic dynamic analysis. In the present method, scattered nodes without connectivity are divided into several subsets by cells with arbitrary shape. Local discrete equation is established over each cell by using moving Kriging interpolation, in which the nodes that located in the cell are used for approximation. Then local discrete equations can be simplified by condensation of degree of freedom, which transfers equations of inner nodes to equations of boundary nodes based on cells. The global dynamic system equations are obtained by assembling all local discrete equations and are solved by using the standard implicit Newmark’s time integration scheme. In the scheme of present method, the calculation of each cell is carried out by meshfree method, and local search is implemented in interpolation. Numerical examples show that the present method has high computational efficiency and good accuracy in solving elastic dynamic problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Condensation technique of degree of freedom is firstly proposed to improve the computational efficiency of meshfree method with Galerkin weak form. In present method, scattered nodes without connectivity are divided into several subsets by cells with arbitrary shape. The local discrete equations are established over each cell by using moving kriging interpolation, in which the nodes that located in the cell are used for approximation. Then, the condensation technique can be introduced into the local discrete equations by transferring equations of inner nodes to equations of boundary nodes based on cell. In the scheme of present method, the calculation of each cell is carried out by meshfree method with Galerkin weak form, and local search is implemented in interpolation. Numerical examples show that the present method has high computational efficiency and convergence, and good accuracy is also obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a variable-order nonlinear cable equation is considered. A numerical method with first-order temporal accuracy and fourth-order spatial accuracy is proposed. The convergence and stability of the numerical method are analyzed by Fourier analysis. We also propose an improved numerical method with second-order temporal accuracy and fourth-order spatial accuracy. Finally, the results of a numerical example support the theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional crash prediction models, such as generalized linear regression models, are incapable of taking into account the multilevel data structure, which extensively exists in crash data. Disregarding the possible within-group correlations can lead to the production of models giving unreliable and biased estimates of unknowns. This study innovatively proposes a -level hierarchy, viz. (Geographic region level – Traffic site level – Traffic crash level – Driver-vehicle unit level – Vehicle-occupant level) Time level, to establish a general form of multilevel data structure in traffic safety analysis. To properly model the potential cross-group heterogeneity due to the multilevel data structure, a framework of Bayesian hierarchical models that explicitly specify multilevel structure and correctly yield parameter estimates is introduced and recommended. The proposed method is illustrated in an individual-severity analysis of intersection crashes using the Singapore crash records. This study proved the importance of accounting for the within-group correlations and demonstrated the flexibilities and effectiveness of the Bayesian hierarchical method in modeling multilevel structure of traffic crash data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many physical processes exhibit fractional order behavior that varies with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider the time variable fractional order mobile-immobile advection-dispersion model. Numerical methods and analyses of stability and convergence for the fractional partial differential equations are quite limited and difficult to derive. This motivates us to develop efficient numerical methods as well as stability and convergence of the implicit numerical methods for the fractional order mobile immobile advection-dispersion model. In the paper, we use the Coimbra variable time fractional derivative which is more efficient from the numerical standpoint and is preferable for modeling dynamical systems. An implicit Euler approximation for the equation is proposed and then the stability of the approximation are investigated. As for the convergence of the numerical scheme we only consider a special case, i.e. the time fractional derivative is independent of time variable t. The case where the time fractional derivative depends both the time variable t and the space variable x will be considered in the future work. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sub‒domain smoothed Galerkin method is proposed to integrate the advantages of mesh‒free Galerkin method and FEM. Arbitrarily shaped sub‒domains are predefined in problems domain with mesh‒free nodes. In each sub‒domain, based on mesh‒free Galerkin weak formulation, the local discrete equation can be obtained by using the moving Kriging interpolation, which is similar to the discretization of the high‒order finite elements. Strain smoothing technique is subsequently applied to the nodal integration of sub‒domain by dividing the sub‒domain into several smoothing cells. Moreover, condensation of DOF can also be introduced into the local discrete equations to improve the computational efficiency. The global governing equations of present method are obtained on the basis of the scheme of FEM by assembling all local discrete equations of the sub‒domains. The mesh‒free properties of Galerkin method are retained in each sub‒domain. Several 2D elastic problems have been solved on the basis of this newly proposed method to validate its computational performance. These numerical examples proved that the newly proposed sub‒domain smoothed Galerkin method is a robust technique to solve solid mechanics problems based on its characteristics of high computational efficiency, good accuracy, and convergence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerically computed engine performance of a nominally two-dimensional radical farming scramjet with porous (permeable C/C ceramic) and porthole fuel injection is presented. Inflow conditions with Mach number, stagnation pressure, and enthalpy of 6.44, 40.2MPa, and 4.31 MJ/kg respectively, and fuel/air equivalence ratio of 0.44 were maintained, along with engine geometry. Hydrogen fuel was injected at an axial location of 92.33mm downstream of the leading edge for each investigated injection method. Results from this study show that porous fuel injection results in enhanced mixing and combustion compared to porthole fuel injection. This is particularly evident within the first half of the combustion chamber where porous fuel injection resulted in mixing and combustion efficiencies of 76% and 63% respectively. At the same location, porthole fuel injection resulted in efficiencies respectively of 58% and 46%. Key mechanisms contributing to the observed improved performance were the formation of an attached oblique fuel injection shock and associated stronger shock-expansion train ingested by the engine, enhanced spreading of the fuel in all directions and a more rapidly growing mixing layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subdiffusion equations with distributed-order fractional derivatives describe some important physical phenomena. In this paper, we consider the time distributed-order and Riesz space fractional diffusions on bounded domains with Dirichlet boundary conditions. Here, the time derivative is defined as the distributed-order fractional derivative in the Caputo sense, and the space derivative is defined as the Riesz fractional derivative. First, we discretize the integral term in the time distributed-order and Riesz space fractional diffusions using numerical approximation. Then the given equation can be written as a multi-term time–space fractional diffusion. Secondly, we propose an implicit difference method for the multi-term time–space fractional diffusion. Thirdly, using mathematical induction, we prove the implicit difference method is unconditionally stable and convergent. Also, the solvability for our method is discussed. Finally, two numerical examples are given to show that the numerical results are in good agreement with our theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The piezoelectric composite material could engender stress concentration resulting from small cracks during layers easily, as the cracks growth will lead to the failure of the whole structure. In this paper, a finite element model for piezoelectric composite materials by ABAQUS including interlayer crack was established, and the J integral and crack tip stress of different types PZT patches were calculated by using the equivalent integral method. Then, the J integral for adhesive layers with different thickness, elastic modulus considering and not considering piezoelectricity was investigated. The results show that the J integral of mode I, II reduces with thicker adhesive layer and lower elastic modules, and the J integral of mode II decreases more sharply than that of mode I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene nanoribbon (GNR) with free edges can exhibit non-flat morphologies due to pre-existing edge stress. Using molecular dynamics (MD) simulations, we investigate the free-edge effect on the shape transition in GNRs with different edge types, including regular (armchair and zigzag), armchair terminated with hydrogen and reconstructed armchair. The results show that initial edge stress and energy are dependent on the edge configurations. It is confirmed that pre-strain on the free edges is a possible way to limit the random shape transition of GNRs. In addition, the influence of surface attachment on the shape transition is also investigated in this work. It is found that surface attachment can lead to periodic ripples in GNRs, dependent on the initial edge configurations.