69 resultados para cotton aphid
Resumo:
To characterize aphid mitochondrial genome (mitogenome) features, we sequenced the complete mitogenome of the Russian wheat aphid, Diuraphis noxia. The 15,784-bp mitogenome with a high A + T content (84.76%) and strong C skew (− 0.26) was arranged in the same gene order as that of the ancestral insect. Unlike typical insect mitogenomes, D. noxia possessed a large tandem repeat region (644 bp) located between trnE and trnF. Sequencing partial mitogenome of the cotton aphid (Aphis gossypii) further confirmed the presence of the large repeat region in aphids, but with different repeat length and copy number. Another motif (58 bp) tandemly repeated 2.3 times in the control region of D. noxia. All repeat units in D. noxia could be folded into stem-loop secondary structures, which could further promote an increase in copy numbers. Characterization of the D. noxia mitogenome revealed distinct mitogenome architectures, thus advancing our understanding of insect mitogenomic diversities and evolution.
Resumo:
An automated gas sampling methodology has been used to estimate nitrous oxide (N2O) emissions from heavy black clay soil in northern Australia where split applications of urea were applied to furrow irrigated cotton. Nitrous oxide emissions from the beds were 643 g N/ha over the 188 day measurement period (after planting), whilst the N2O emissions from the furrows were significantly higher at 967 g N/ha. The DNDC model was used to develop a full season simulation of N2O and N2 emissions. Seasonal N2O emissions were equivalent to 0.83% of applied N, with total gaseous N losses (excluding NH3) estimated to be 16% of the applied N.
Resumo:
Cotton is one of the most important irrigated crops in subtropical Australia. In recent years, cotton production has been severely affected by the worst drought in recorded history, with the 2007–08 growing season recording the lowest average cotton yield in 30 years. The use of a crop simulation model to simulate the long-term temporal distribution of cotton yields under different levels of irrigation and the marginal value for each unit of water applied is important in determining the economic feasibility of current irrigation practices. The objectives of this study were to: (i) evaluate the CROPGRO-Cotton simulation model for studying crop growth under deficit irrigation scenarios across ten locations in New South Wales (NSW) and Queensland (Qld); (ii) evaluate agronomic and economic responses to water inputs across the ten locations; and (iii) determine the economically optimal irrigation level. The CROPGRO-Cotton simulation model was evaluated using 2 years of experimental data collected at Kingsthorpe, Qld. The model was further evaluated using data from nine locations between northern NSW and southern Qld. Long-term simulations were based on the prevalent furrowirrigation practice of refilling the soil profile when the plant -available soil water content is<50%. The model closely estimated lint yield for all locations evaluated. Our results showed that the amounts of water needed to maximise profit and maximise yield are different, which has economic and environmental implications. Irrigation needed to maximise profits varied with both agronomic and economic factors, which can be quite variable with season and location. Therefore, better tools and information that consider the agronomic and economic implications of irrigation decisions need to be developed and made available to growers.
Resumo:
Irrigation is known to stimulate soil microbial carbon and nitrogen turnover and potentially the emissions of nitrous oxide (N2O) and carbon dioxide (CO2). We conducted a study to evaluate the effect of three different irrigation intensities on soil N2O and CO2 fluxes and to determine if irrigation management can be used to mitigate N2O emissions from irrigated cotton on black vertisols in South-Eastern Queensland, Australia. Fluxes were measured over the entire 2009/2010 cotton growing season with a fully automated chamber system that measured emissions on a sub-daily basis. Irrigation intensity had a significant effect on CO2 emission. More frequent irrigation stimulated soil respiration and seasonal CO2 fluxes ranged from 2.7 to 4.1 Mg-C ha−1 for the treatments with the lowest and highest irrigation frequency, respectively. N2O emission happened episodic with highest emissions when heavy rainfall or irrigation coincided with elevated soil mineral N levels and seasonal emissions ranged from 0.80 to 1.07 kg N2O-N ha−1 for the different treatments. Emission factors (EF = proportion of N fertilizer emitted as N2O) over the cotton cropping season, uncorrected for background emissions, ranged from 0.40 to 0.53 % of total N applied for the different treatments. There was no significant effect of the different irrigation treatments on soil N2O fluxes because highest emission happened in all treatments following heavy rainfall caused by a series of summer thunderstorms which overrode the effect of the irrigation treatment. However, higher irrigation intensity increased the cotton yield and therefore reduced the N2O intensity (N2O emission per lint yield) of this cropping system. Our data suggest that there is only limited scope to reduce absolute N2O emissions by different irrigation intensities in irrigated cotton systems with summer dominated rainfall. However, the significant impact of the irrigation treatments on the N2O intensity clearly shows that irrigation can easily be used to optimize the N2O intensity of such a system.
Resumo:
This PhD study has examined the population genetics of the Russian wheat aphid (RWA, Diuraphis noxia), one of the world’s most invasive agricultural pests, throughout its native and introduced global range. Firstly, this study investigated the geographic distribution of genetic diversity within and among RWA populations in western China. Analysis of mitochondrial data from 18 sites provided evidence for the long-term existence and expansion of RWAs in western China. The results refute the hypothesis that RWA is an exotic species only present in China since 1975. The estimated date of RWA expansion throughout western China coincides with the debut of wheat domestication and cultivation practices in western Asia in the Holocene. It is concluded that western China represents the limit of the far eastern native range of this species. Analysis of microsatellite data indicated high contemporary gene flow among northern populations in western China, while clear geographic isolation between northern and southern populations was identified across the Tianshan mountain range and extensive desert regions. Secondly, this study analyzed the worldwide pathway of invasion using both microsatellite and endosymbiont genetic data. Individual RWAs were obtained from native populations in Central Asia and the Middle East and invasive populations in Africa and the Americas. Results indicated two pathways of RWA invasion from 1) Syria in the Middle East to North Africa and 2) Turkey to South Africa, Mexico and then North and South America. Very little clone diversity was identified among invasive populations suggesting that a limited founder event occurred together with predominantly asexual reproduction and rapid population expansion. The most likely explanation for the rapid spread (within two years) from South Africa to the New World is by human movement, probably as a result of the transfer of wheat breeding material. Furthermore, the mitochondrial data revealed the presence of a universal haplotype and it is proposed that this haplotype is representative of a wheat associated super-clone that has gained dominance worldwide as a result of the widespread planting of domesticated wheat. Finally, this study examined salivary gland gene diversity to determine whether a functional basis for RWA invasiveness could be identified. Peroxidase DNA sequence data were obtained for a selection of worldwide RWA samples. Results demonstrated that most native populations were polymorphic while invasive populations were monomorphic, supporting previous conclusions relating to demographic founder effects in invasive populations. Purifying selection most likely explains the existence of a universal allele present in Middle Eastern populations, while balancing selection was evident in East Asian populations. Selection acting on the peroxidase gene may provide an allele-dependent advantage linked to the successful establishment of RWAs on wheat, and ultimately their invasion potential. In conclusion, this study is the most comprehensive molecular genetic investigation of RWA population genetics undertaken to date and provides significant insights into the source and pathway of global invasion and the potential existence of a wheat-adapted genotype that has colonised major wheat growing countries worldwide except for Australia. This research has major biosecurity implications for Australia’s grain industry.
Resumo:
Cotton growing landscapes in Australia have been dominated by dual-toxin transgenic Bt varieties since 2004. The cotton crop has thus effectively become a sink for the main target pest, Helicoverpa armigera. Theory predicts that there should be strong selection on female moths to avoid laying on such plants. We assessed oviposition, collected from two cotton-growing regions, by female moths when given a choice of tobacco, cotton and cabbage. Earlier work in the 1980s and 1990s on populations from the same geographic locations indicated these hosts were on average ranked as high, mid and low preference plants, respectively, and that host rankings had a heritable component. In the present study, we found no change in the relative ranking of hosts by females, with most eggs being laid on tobacco, then cotton and least on cabbage. As in earlier work, some females laid most eggs on cotton and aspects of oviposition behaviour had a heritable component. Certainly, cotton is not avoided as a host, and the implications of these finding for managing resistance to Bt cotton are discussed.
Resumo:
This study investigated the population genetics, demographic history and pathway of invasion of the Russian wheat aphid (RWA) from its native range in Central Asia, the Middle East and Europe to South Africa and the Americas. We screened microsatellite markers, mitochondrial DNA and endosymbiont genes in 504 RWA clones from nineteen populations worldwide. Following pathway analyses of microsatellite and endosymbiont data, we postulate that Turkey and Syria were the most likely sources of invasion to Kenya and South Africa, respectively. Furthermore, we found that one clone transferred between South Africa and the Americas was most likely responsible for the New World invasion. Finally, endosymbiont DNA was found to be a high resolution population genetic marker, extremely useful for studies of invasion over a relatively short evolutionary history time frame. This study has provided valuable insights into the factors that may have facilitated the recent global invasion by this damaging pest.
Resumo:
The cotton strip assay (CSA) is an established technique for measuring soil microbial activity. The technique involves burying cotton strips and measuring their tensile strength after a certain time. This gives a measure of the rotting rate, R, of the cotton strips. R is then a measure of soil microbial activity. This paper examines properties of the technique and indicates how the assay can be optimised. Humidity conditioning of the cotton strips before measuring their tensile strength reduced the within and between day variance and enabled the distribution of the tensile strength measurements to approximate normality. The test data came from a three-way factorial experiment (two soils, two temperatures, three moisture levels). The cotton strips were buried in the soil for intervals of time ranging up to 6 weeks. This enabled the rate of loss of cotton tensile strength with time to be studied under a range of conditions. An inverse cubic model accounted for greater than 90% of the total variation within each treatment combination. This offers support for summarising the decomposition process by a single parameter R. The approximate variance of the decomposition rate was estimated from a function incorporating the variance of tensile strength and the differential of the function for the rate of decomposition, R, with respect to tensile strength. This variance function has a minimum when the measured strength is approximately 2/3 that of the original strength. The estimates of R are almost unbiased and relatively robust against the cotton strips being left in the soil for more or less than the optimal time. We conclude that the rotting rate X should be measured using the inverse cubic equation, and that the cotton strips should be left in the soil until their strength has been reduced to about 2/3.
Resumo:
Nitrous oxide emissions were monitored at three sites over a 2-year period in irrigated cotton fields in Khorezm, Uzbekistan, a region located in the arid deserts of the Aral Sea Basin. The fields were managed using different fertilizer management strategies and irrigation water regimes. N2O emissions varied widely between years, within 1 year throughout the vegetation season, and between the sites. The amount of irrigation water applied, the amount and type of N fertilizer used, and topsoil temperature had the greatest effect on these emissions. Very high N2O emissions of up to 3000 μg N2O-N m−2 h−1 were measured in periods following N-fertilizer application in combination with irrigation events. These “emission pulses” accounted for 80–95% of the total N2O emissions between April and September and varied from 0.9 to 6.5 kg N2O-N ha−1.. Emission factors (EF), uncorrected for background emission, ranged from 0.4% to 2.6% of total N applied, corresponding to an average EF of 1.48% of applied N fertilizer lost as N2O-N. This is in line with the default global average value of 1.25% of applied N used in calculations of N2O emissions by the Intergovernmental Panel on Climate Change. During the emission pulses, which were triggered by high soil moisture and high availability of mineral N, a clear diurnal pattern of N2O emissions was observed, driven by daily changes in topsoil temperature. For these periods, air sampling from 8:00 to 10:00 and from 18:00 to 20:00 was found to best represent the mean daily N2O flux rates. The wet topsoil conditions caused by irrigation favored the production of N2O from NO3− fertilizers, but not from NH4+ fertilizers, thus indicating that denitrification was the main process causing N2O emissions. It is therefore argued that there is scope for reducing N2O emission from irrigated cotton production; i.e. through the exclusive use of NH4+ fertilizers. Advanced application and irrigation techniques such as subsurface fertilizer application, drip irrigation and fertigation may also minimize N2O emission from this regionally dominant agro-ecosystem.
Resumo:
An increasing concern over the sustainability credentials of food and fiber crops require that farmers and their supply chain partners have access to appropriate and industry-friendly tools to be able to measure and improve the outcomes. This article focuses on one of the sustainability indicators, namely, greenhouse gas (GHG) emissions, and nine internationally accredited carbon footprint calculators were identified and compared on an outcomes basis against the same cropping data from a case study cotton farm. The purpose of this article is to identify the most “appropriate” methodology to be applied by cotton suppliers in this regard. From the analysis of the results, we subsequently propose a new integrated model as the basis for an internationally accredited carbon footprint tool for cotton and show how the model can be applied to evaluate the emission outcomes of different farming practices.
Resumo:
Yield in cultivated cotton (Gossypium spp.) is affected by the number and distribution of fibres initiated on the seed surface but, apart from simple statistical summaries, little has been done to assess this phenotype quantitatively. Here we use two types of spatial statistics to describe and quantify differences in patterning of cotton ovule fibre initials (FI). The following five different species of Gossypium were analysed: G. hirsutum L., G. barbadense L., G. arboreum, G. raimondii Ulbrich. and G. trilobum (DC.) Skovsted. Scanning electron micrographs of FIs were taken on the day of anthesis. Cell centres for fibre and epidermal cells were digitised and analysed by spatial statistics methods appropriate for marked point processes and tessellations. Results were consistent with previously published reports of fibre number and spacing. However, it was shown that the spatial distributions of FIs in all of species examined exhibit regularity, and are not completely random as previously implied. The regular arrangement indicates FIs do not appear independently of each other and we surmise there may be some form of mutual inhibition specifying fibre-initial development. It is concluded that genetic control of FIs differs from that of stomata, another well studied plant idioblast. Since spatial statistics show clear species differences in the distribution of FIs within this genus, they provide a useful method for phenotyping cotton. © CSIRO 2007.
Resumo:
Nitrogen fertiliser is a major source of atmospheric N2O and over recent years there is growing evidence for a non-linear, exponential relationship between N fertiliser application rate and N2O emissions. However, there is still high uncertainty around the relationship of N fertiliser rate and N2O emissions for many cropping systems. We conducted year-round measurements of N2O emission and lint yield in four N rate treatments (0, 90, 180 and 270 kg N ha-1) in a cotton-fallow rotation on a black vertosol in Australia. We observed a nonlinear exponential response of N2O emissions to increasing N fertiliser rates with cumulative annual N2O emissions of 0.55 kg N ha-1, 0.67kg N ha-1, 1.07 kg N ha-1 and 1.89 kg N ha-1 for the four respective N fertiliser rates while no N response to yield occurred above 180N. The N fertiliser induced annual N2O EF factors increased from 0.13% to 0.29% and 0.50% for the 90N, 180N and 270N treatments respectively, significantly lower than the IPCC Tier 1 default value (1.0 %). This non-linear response suggests that an exponential N2O emissions model may be more appropriate for use in estimating emission of N2O from soils cultivated to cotton in Australia. It also demonstrates that improved agricultural N management practices can be adopted in cotton to substantially reduce N2O emissions without affecting yield potential.