176 resultados para corneal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To determine the subbasal nerve density and tortuosity at 5 corneal locations and to investigate whether these microstructural observations correlate with corneal sensitivity. Method: Sixty eyes of 60 normal human subjects were recruited into 1 of 3 age groups, group 1: aged ,35 years, group 2: aged 35–50 years, and group 3: aged .50 years. All eyes were examined using slit-lamp biomicroscopy, noncontact corneal esthesiometry, and slit scanning in vivo confocal microscopy. Results: The mean subbasal nerve density and the mean corneal sensitivity were greatest centrally (14,731 6 6056 mm/mm2 and 0.38 6 0.21 millibars, respectively) and lowest in the nasal mid periphery (7850 6 4947 mm/mm2 and 0.49 6 0.25 millibars, respectively). The mean subbasal nerve tortuosity coefficient was greatest in the temporal mid periphery (27.3 6 6.4) and lowest in the superior mid periphery (19.3 6 14.1). There was no significant difference in mean total subbasal nerve density between age groups. However, corneal sensation (P = 0.001) and subbasal nerve tortuosity (P = 0.004) demonstrated significant differences between age groups. Subbasal nerve density only showed significant correlations with corneal sensitivity threshold in the temporal cornea and with subbasal nerve tortuosity in the inferior and nasal cornea. However, these correlations were weak. Conclusions: This study quantitatively analyzes living human corneal nerve structure and an aspect of nerve function. There is no strong correlation between subbasal nerve density and corneal sensation. This study provides useful baseline data for the normal living human cornea at central and mid-peripheral locations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: Neuropathy is a cause of significant disability in patients with Fabry disease, yet its diagnosis is difficult. In this study we compared the novel noninvasive techniques of corneal confocal microscopy (CCM) to quantify small-fiber pathology, and non-contact corneal esthesiometry (NCCA) to quantify loss of corneal sensation, with established tests of neuropathy in patients with Fabry disease. Ten heterozygous females with Fabry disease not on enzyme replacement therapy (ERT), 6 heterozygous females, 6 hemizygous males on ERT, and 14 age-matched, healthy volunteers underwent detailed quantification of neuropathic symptoms, neurological deficits, neurophysiology, quantitative sensory testing (QST), NCCA, and CCM. All patients with Fabry disease had significant neuropathic symptoms and an elevated Mainz score. Peroneal nerve amplitude was reduced in all patients and vibration perception threshold was elevated in both male and female patients on ERT. Cold sensation (CS) threshold was significantly reduced in both male and female patients on ERT (P < 0.02), but warm sensation (WS)and heat-induced pain (HIP) were only significantly increased in males onERT (P<0.01). However, corneal sensation assessed withNCCAwas significantly reduced in female (P < 0.02) and male (P < 0.04) patients on ERT compared with control subjects. According to CCM, corneal nerve fiber and branch density was significantly reduced in female (P < 0.03) and male (P < 0.02) patients on ERT compared with control subjects. Furthermore, the severity of neuropathic symptoms and the neurological component of the Mainz Severity Score Index correlated significantly with QSTand CCM. This study shows that CCM and NCCA provide a novel means to detect early nerve fiber damage and dysfunction, respectively, in patients with Fabry disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. This study was conducted to determine the magnitude of pupil center shift between the illumination conditions provided by corneal topography measurement (photopic illuminance) and by Hartmann-Shack aberrometry (mesopic illuminance) and to investigate the importance of this shift when calculating corneal aberrations and for the success of wavefront-guided surgical procedures. METHODS. Sixty-two subjects with emmetropia underwent corneal topography and Hartmann-Shack aberrometry. Corneal limbus and pupil edges were detected, and the differences between their respective centers were determined for both procedures. Corneal aberrations were calculated using the pupil centers for corneal topography and for Hartmann-Shack aberrometry. Bland-Altmann plots and paired t-tests were used to analyze the differences between corneal aberrations referenced to the two pupil centers. RESULTS. The mean magnitude (modulus) of the displacement of the pupil with the change of the illumination conditions was 0.21 ± 0.11 mm. The effect of this pupillary shift was manifest for coma corneal aberrations for 5-mm pupils, but the two sets of aberrations calculated with the two pupil positions were not significantly different. Sixty-eight percent of the population had differences in coma smaller than 0.05 µm, and only 4% had differences larger than 0.1 µm. Pupil displacement was not large enough to significantly affect other higher-order Zernike modes. CONCLUSIONS. Estimated corneal aberrations changed slightly between photopic and mesopic illumination conditions given by corneal topography and Hartmann-Shack aberrometry. However, this systematic pupil shift, according to the published tolerances ranges, is enough to deteriorate the optical quality below the theoretically predicted diffraction limit of wavefront-guided corneal surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate associations between the diurnal variation in a range of corneal parameters, including anterior and posterior corneal topography, and regional corneal thickness. ----- Methods: Fifteen subjects had their corneas measured using a rotating Scheimpflug camera (Pentacam) every 3-7 hours over a 24-hour period. Anterior and posterior corneal axial curvature, pachymetry and anterior chamber depth were analysed. The best fitting corneal sphero-cylinder from the axial curvature, and the average corneal thickness for a series of different corneal regions were calculated. Intraocular pressure and axial length were also measured at each measurement session. Repeated measures ANOVA were used to investigate diurnal change in these parameters. Analysis of covariance was used to examine associations between the measured ocular parameters. ----- Results: Significant diurnal variation was found to occur in both the anterior and posterior corneal curvature and in the regional corneal thickness. Flattening of the anterior corneal best sphere was observed at the early morning measurement (p < 0.0001). The posterior cornea also underwent a significant steepening (p < 0.0001) and change in astigmatism 90/180° at this time. A significant swelling of the cornea (p < 0.0001) was also found to occur immediately after waking. Highly significant associations were found between the diurnal variation in corneal thickness and the changes in corneal curvature. ----- Conclusions: Significant diurnal variation occurs in the regional thickness and the shape of the anterior and posterior cornea. The largest changes in the cornea were typically evident upon waking. The observed non-uniform regional corneal thickness changes resulted in a steepening of the posterior cornea, and a flattening of the anterior cornea to occur at this time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To compare the repeatability within anterior corneal topography measurements and agreement between measurements with the Pentacam HR rotating Scheimpflug camera and with a previously validated Placido disk–based videokeratoscope (Medmont E300). ------ SETTING: Contact Lens and Visual Optics Laboratory, School of Optometry, Queensland University of Technology, Brisbane, Queensland, Australia. ----- METHODS: Normal eyes in 101 young adult subjects had corneal topography measured using the Scheimpflug camera (6 repeated measurements) and videokeratoscope (4 repeated measurements). The best-fitting axial power corneal spherocylinder was calculated and converted into power vectors. Corneal higher-order aberrations (HOAs) (up to the 8th Zernike order) were calculated using the corneal elevation data from each instrument. ----- RESULTS: Both instruments showed excellent repeatability for axial power spherocylinder measurements (repeatability coefficients <0.25 diopter; intraclass correlation coefficients >0.9) and good agreement for all power vectors. Agreement between the 2 instruments was closest when the mean of multiple measurements was used in analysis. For corneal HOAs, both instruments showed reasonable repeatability for most aberration terms and good correlation and agreement for many aberrations (eg, spherical aberration, coma, higher-order root mean square). For other aberrations (eg, trefoil and tetrafoil), the 2 instruments showed relatively poor agreement. ----- CONCLUSIONS: For normal corneas, the Scheimpflug system showed excellent repeatability and reasonable agreement with a previously validated videokeratoscope for the anterior corneal axial curvature best-fitting spherocylinder and several corneal HOAs. However, for certain aberrations with higher azimuthal frequencies, the Scheimpflug system had poor agreement with the videokeratoscope; thus, caution should be used when interpreting these corneal aberrations with the Scheimpflug system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract—Corneal topography estimation that is based on the Placido disk principle relies on good quality of precorneal tear film and sufficiently wide eyelid (palpebral) aperture to avoid reflections from eyelashes. However, in practice, these conditions are not always fulfilled resulting in missing regions, smaller corneal coverage, and subsequently poorer estimates of corneal topography. Our aim was to enhance the standard operating range of a Placido disk videokeratoscope to obtain reliable corneal topography estimates in patients with poor tear film quality, such as encountered in those diagnosed with dry eye, and with narrower palpebral apertures as in the case of Asian subjects. This was achieved by incorporating in the instrument’s own topography estimation algorithm an image processing technique that comprises a polar-domain adaptive filter and amorphological closing operator. The experimental results from measurements of test surfaces and real corneas showed that the incorporation of the proposed technique results in better estimates of corneal topography, and, in many cases, to a significant increase in the estimated coverage area making such an enhanced videokeratoscope a better tool for clinicians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-speed videokeratoscopy is an emerging technique that enables study of the corneal surface and tear-film dynamics. Unlike its static predecessor, this new technique results in a very large amount of digital data for which storage needs become significant. We aimed to design a compression technique that would use mathematical functions to parsimoniously fit corneal surface data with a minimum number of coefficients. Since the Zernike polynomial functions that have been traditionally used for modeling corneal surfaces may not necessarily correctly represent given corneal surface data in terms of its optical performance, we introduced the concept of Zernike polynomial-based rational functions. Modeling optimality criteria were employed in terms of both the rms surface error as well as the point spread function cross-correlation. The parameters of approximations were estimated using a nonlinear least-squares procedure based on the Levenberg-Marquardt algorithm. A large number of retrospective videokeratoscopic measurements were used to evaluate the performance of the proposed rational-function-based modeling approach. The results indicate that the rational functions almost always outperform the traditional Zernike polynomial approximations with the same number of coefficients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different methods to measure binocular longitudinal corneal apex movements were synchronously applied. High-speed videokeratoscopy at a sampling frequency of 15 Hz and a customdesigned ultrasound distance sensor at 100 Hz were used for the left and the right eye, respectively. Four healthy subjects participated in the study. Simultaneously, cardiac electric cycle (ECG) was registered for each subject at 100 Hz. Each measurement took 20 s. Subjects were asked to suppress blinking during the measurements. A rigid headrest and a bite-bar were used to minimize undesirable head movements. Time, frequency and time-frequency representations of the acquired signals were obtained to establish their temporal and spectral contents. Coherence analysis was used to estimate the correlation between the measured signals. The results showed close correlation between both corneal apex movements and the cardiopulmonary system. Unraveling these relationships could lead to better understanding of interactions between ocular biomechanics and vision. The advantages and disadvantages of the two methods in the context of measuring longitudinal movements of the corneal apex are outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although comparison phakometry has been used by a number of studies to measure posterior corneal shape, these studies have not calculated the size of the posterior corneal zones of reflection they assessed. This paper develops paraxial equations for calculating posterior corneal zones of reflection, based on standard keratometry equations and equivalent mirror theory. For targets used in previous studies, posterior corneal reflection zone sizes were calculated using paraxial equations and using exact ray tracing, assuming spherical and aspheric corneal surfaces. Paraxial methods and exact ray tracing methods give similar estimates for reflection zone sizes less than 2 mm, but for larger zone sizes ray tracing methods should be used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To ascertain the effectiveness of object-centered three-dimensional representations for the modeling of corneal surfaces. Methods: Three-dimensional (3D) surface decomposition into series of basis functions including: (i) spherical harmonics, (ii) hemispherical harmonics, and (iii) 3D Zernike polynomials were considered and compared to the traditional viewer-centered representation of two-dimensional (2D) Zernike polynomial expansion for a range of retrospective videokeratoscopic height data from three clinical groups. The data were collected using the Medmont E300 videokeratoscope. The groups included 10 normal corneas with corneal astigmatism less than −0.75 D, 10 astigmatic corneas with corneal astigmatism between −1.07 D and 3.34 D (Mean = −1.83 D, SD = ±0.75 D), and 10 keratoconic corneas. Only data from the right eyes of the subjects were considered. Results: All object-centered decompositions led to significantly better fits to corneal surfaces (in terms of the RMS error values) than the corresponding 2D Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters (2, 4, 6, and 8 mm), and model orders (4th to 10th radial orders) The best results (smallest RMS fit error) were obtained with spherical harmonics decomposition which lead to about 22% reduction in the RMS fit error, as compared to the traditional 2D Zernike polynomials. Hemispherical harmonics and the 3D Zernike polynomials reduced the RMS fit error by about 15% and 12%, respectively. Larger reduction in RMS fit error was achieved for smaller corneral diameters and lower order fits. Conclusions: Object-centered 3D decompositions provide viable alternatives to traditional viewer-centered 2D Zernike polynomial expansion of a corneal surface. They achieve better fits to videokeratoscopic height data and could be particularly suited to the analysis of multiple corneal measurements, where there can be slight variations in the position of the cornea from one map acquisition to the next.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was designed to derive central and peripheral oxygen transmissibility (Dk/t) thresholds for soft contact lenses to avoid hypoxia-induced corneal swelling (increased corneal thickness) during open eye wear. Central and peripheral corneal thicknesses were measured in a masked and randomized fashion for the left eye of each of seven subjects before and after 3 h of afternoon wear of five conventional hydrogel and silicone hydrogel contact lens types offering a range of Dk/t from 2.4 units to 115.3 units. Curve fitting for plots of change in corneal thickness versus central and peripheral Dk/t found threshold values of 19.8 and 32.6 units to avoid corneal swelling during open eye contact lens wear for a typical wearer. Although some conventional hydrogel soft lenses are able to achieve this criterion for either central or peripheral lens areas (depending on lens power), in general, no conventional hydrogel soft lenses meet both the central and peripheral thresholds. Silicone hydrogel contact lenses typically meet both the central and peripheral thresholds and use of these lenses therefore avoids swelling in all regions of the cornea. ' 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 92B: 361–365, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with idiopathic small fibre neuropathy (ISFN) have been shown to have significant intraepidermal nerve fibre loss and an increased prevalence of impaired glucose tolerance (IGT). It has been suggested that the dysglycemia of IGT and additional metabolic risk factors may contribute to small nerve fibre damage in these patients. Twenty-five patients with ISFN and 12 aged-matched control subjects underwent a detailed evaluation of neuropathic symptoms, neurological deficits (Neuropathy deficit score (NDS); Nerve Conduction Studies (NCS); Quantitative Sensory Testing (QST) and Corneal Confocal Microscopy (CCM)) to quantify small nerve fibre pathology. Eight (32%) patients had IGT. Whilst all patients with ISFN had significant neuropathic symptoms, NDS, NCS and QST except for warm thresholds were normal. Corneal sensitivity was reduced and CCM demonstrated a significant reduction in corneal nerve fibre density (NFD) (Pb0.0001), nerve branch density (NBD) (Pb0.0001), nerve fibre length (NFL) (Pb0.0001) and an increase in nerve fibre tortuosity (NFT) (Pb0.0001). However these parameters did not differ between ISFN patients with and without IGT, nor did they correlate with BMI, lipids and blood pressure. Corneal confocal microscopy provides a sensitive non-invasive means to detect small nerve fibre damage in patients with ISFN and metabolic abnormalities do not relate to nerve damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate the influence of convergence on axial length and corneal topography in young adult subjects.---------- Methods: Fifteen emmetropic young adult subjects with normal binocular vision had axial length and corneal topography measured immediately before and after a 15-min period of base out (BO) prismatic spectacle lens wear. Two different magnitude prismatic spectacles were worn in turn (8 [DELTA] BO and 16 [DELTA] BO), and for both tasks, distance fixation was maintained for the duration of lens wear. Eight subjects returned on a separate day for further testing and had axial length measured before, during, and immediately after a 15-min convergence task.---------- Results: No significant change was found to occur in axial length either during or after the sustained convergence tasks (p > 0.6). Some small but significant changes in corneal topography were found to occur after sustained convergence. The most significant corneal change was observed after the 16 [DELTA] BO prism wear. The corneal refractive power spherocylinder power vector J0 was found to change by a small (mean change of 0.03 D after the 16 [DELTA] BO task) but statistically significant (p = 0.03) amount as a result of the convergence task (indicative of a reduction in with-the-rule corneal astigmatism after convergence). Corneal axial power was found to exhibit a significant flattening in superior regions. Conclusions: Axial length appears largely unchanged by a period of sustained convergence. However, small but significant changes occur in the topography of the cornea after convergence.