116 resultados para conclusions bias
Resumo:
Background: Clinical practice and clinical research has made a concerted effort to move beyond the use of clinical indicators alone and embrace patient focused care through the use of patient reported outcomes such as healthrelated quality of life. However, unless patients give consistent consideration to the health states that give meaning to measurement scales used to evaluate these constructs, longitudinal comparison of these measures may be invalid. This study aimed to investigate whether patients give consideration to a standard health state rating scale (EQ-VAS) and whether consideration of good and poor health state descriptors immediately changes their selfreport. Methods: A randomised crossover trial was implemented amongst hospitalised older adults (n = 151). Patients were asked to consider descriptions of extremely good (Description-A) and poor (Description-B) health states. The EQ-VAS was administered as a self-report at baseline, after the first descriptors (A or B), then again after the remaining descriptors (B or A respectively). At baseline patients were also asked if they had considered either EQVAS anchors. Results: Overall 106/151 (70%) participants changed their self-evaluation by ≥5 points on the 100 point VAS, with a mean (SD) change of +4.5 (12) points (p < 0.001). A total of 74/151 (49%) participants did not consider the best health VAS anchor, of the 77 who did 59 (77%) thought the good health descriptors were more extreme (better) then they had previously considered. Similarly 85/151 (66%) participants did not consider the worst health anchor of the 66 who did 63 (95%) thought the poor health descriptors were more extreme (worse) then they had previously considered. Conclusions: Health state self-reports may not be well considered. An immediate significant shift in response can be elicited by exposure to a mere description of an extreme health state despite no actual change in underlying health state occurring. Caution should be exercised in research and clinical settings when interpreting subjective patient reported outcomes that are dependent on brief anchors for meaning. Trial Registration: Australian and New Zealand Clinical Trials Registry (#ACTRN12607000606482) http://www.anzctr. org.au
Resumo:
Background: Assessments of change in subjective patient reported outcomes such as health-related quality of life (HRQoL) are a key component of many clinical and research evaluations. However, conventional longitudinal evaluation of change may not agree with patient perceived change if patients' understanding of the subjective construct under evaluation changes over time (response shift) or if patients' have inaccurate recollection (recall bias). This study examined whether older adults' perception of change is in agreement with conventional longitudinal evaluation of change in their HRQoL over the duration of their hospital stay. It also investigated this level of agreement after adjusting patient perceived change for recall bias that patients may have experienced. Methods: A prospective longitudinal cohort design nested within a larger randomised controlled trial was implemented. 103 hospitalised older adults participated in this investigation at a tertiary hospital facility. The EQ-5D utility and Visual Analogue Scale (VAS) scores were used to evaluate HRQoL. Participants completed EQ-5D reports as soon as they were medically stable (within three days of admission) then again immediately prior to discharge. Three methods of change score calculation were used (conventional change, patient perceived change and patient perceived change adjusted for recall bias). Agreement was primarily investigated using intraclass correlation coefficients (ICC) and limits of agreement. Results: Overall 101 (98%) participants completed both admission and discharge assessments. The mean (SD) age was 73.3 (11.2). The median (IQR) length of stay was 38 (20-60) days. For agreement between conventional longitudinal change and patient perceived change: ICCs were 0.34 and 0.40 for EQ-5D utility and VAS respectively. For agreement between conventional longitudinal change and patient perceived change adjusted for recall bias: ICCs were 0.98 and 0.90 respectively. Discrepancy between conventional longitudinal change and patient perceived change was considered clinically meaningful for 84 (83.2%) of participants, after adjusting for recall bias this reduced to 8 (7.9%). Conclusions: Agreement between conventional change and patient perceived change was not strong. A large proportion of this disagreement could be attributed to recall bias. To overcome the invalidating effect of response shift (on conventional change) and recall bias (on patient perceived change) a method of adjusting patient perceived change for recall bias has been described.
Resumo:
Objective: To compare measurements of sleeping metabolic rate (SMR) in infancy with predicted basal metabolic rate (BMR) estimated by the equations of Schofield. Methods: Some 104 serial measurements of SMR by indirect calorimetry were performed in 43 healthy infants at 1.5, 3, 6, 9 and 12 months of age. Predicted BMR was calculated using the weight only (BMR-wo) and weight and height (BMR-wh) equations of Schofield for 0-3-y-olds. Measured SMR values were compared with both predictive values by means of the Bland-Altman statistical test. Results: The mean measured SMR was 1.48 MJ/day. The mean predicted BMR values were 1.66 and 1.47 MJ/day for the weight only and weight and height equations, respectively. The Bland-Altman analysis showed that BMR-wo equation on average overestimated SMR by 0.18 MJ/day (11%) and the BMR-wh equation underestimated SMR by 0.01 MJ/day (1%). However the 95% limits of agreement were wide: -0.64 to + 0.28 MJ/day (28%) for the former equation and -0.39 to + 0.41 MJ/day (27%) for the latter equation. Moreover there was a significant correlation between the mean of the measured and predicted metabolic rate and the difference between them. Conclusions: The wide variation seen in the difference between measured and predicted metabolic rate and the bias probably with age indicates there is a need to measure actual metabolic rate for individual clinical care in this age group.
Resumo:
OBJECTIVE: To compare, in patients with cancer and in healthy subjects, measured resting energy expenditure (REE) from traditional indirect calorimetry to a new portable device (MedGem) and predicted REE. DESIGN: Cross-sectional clinical validation study. SETTING: Private radiation oncology centre, Brisbane, Australia. SUBJECTS: Cancer patients (n = 18) and healthy subjects (n = 17) aged 37-86 y, with body mass indices ranging from 18 to 42 kg/m(2). INTERVENTIONS: Oxygen consumption (VO(2)) and REE were measured by VMax229 (VM) and MedGem (MG) indirect calorimeters in random order after a 12-h fast and 30-min rest. REE was also calculated from the MG without adjustment for nitrogen excretion (MGN) and estimated from Harris-Benedict prediction equations. Data were analysed using the Bland and Altman approach, based on a clinically acceptable difference between methods of 5%. RESULTS: The mean bias (MGN-VM) was 10% and limits of agreement were -42 to 21% for cancer patients; mean bias -5% with limits of -45 to 35% for healthy subjects. Less than half of the cancer patients (n = 7, 46.7%) and only a third (n = 5, 33.3%) of healthy subjects had measured REE by MGN within clinically acceptable limits of VM. Predicted REE showed a mean bias (HB-VM) of -5% for cancer patients and 4% for healthy subjects, with limits of agreement of -30 to 20% and -27 to 34%, respectively. CONCLUSIONS: Limits of agreement for the MG and Harris Benedict equations compared to traditional indirect calorimetry were similar but wide, indicating poor clinical accuracy for determining the REE of individual cancer patients and healthy subjects.
Resumo:
Hospital acquired infections (HAI) are costly but many are avoidable. Evaluating prevention programmes requires data on their costs and benefits. Estimating the actual costs of HAI (a measure of the cost savings due to prevention) is difficult as HAI changes cost by extending patient length of stay, yet, length of stay is a major risk factor for HAI. This endogeneity bias can confound attempts to measure accurately the cost of HAI. We propose a two-stage instrumental variables estimation strategy that explicitly controls for the endogeneity between risk of HAI and length of stay. We find that a 10% reduction in ex ante risk of HAI results in an expected savings of £693 ($US 984).
Error, Bias, and Long-Branch Attraction in Data for Two Chloroplast Photosystem Genes in Seed Plants
Resumo:
Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady
Resumo:
Background The accurate measurement of Cardiac output (CO) is vital in guiding the treatment of critically ill patients. Invasive or minimally invasive measurement of CO is not without inherent risks to the patient. Skilled Intensive Care Unit (ICU) nursing staff are in an ideal position to assess changes in CO following therapeutic measures. The USCOM (Ultrasonic Cardiac Output Monitor) device is a non-invasive CO monitor whose clinical utility and ease of use requires testing. Objectives To compare cardiac output measurement using a non-invasive ultrasonic device (USCOM) operated by a non-echocardiograhically trained ICU Registered Nurse (RN), with the conventional pulmonary artery catheter (PAC) using both thermodilution and Fick methods. Design Prospective observational study. Setting and participants Between April 2006 and March 2007, we evaluated 30 spontaneously breathing patients requiring PAC for assessment of heart failure and/or pulmonary hypertension at a tertiary level cardiothoracic hospital. Methods SCOM CO was compared with thermodilution measurements via PAC and CO estimated using a modified Fick equation. This catheter was inserted by a medical officer, and all USCOM measurements by a senior ICU nurse. Mean values, bias and precision, and mean percentage difference between measures were determined to compare methods. The Intra-Class Correlation statistic was also used to assess agreement. The USCOM time to measure was recorded to assess the learning curve for USCOM use performed by an ICU RN and a line of best fit demonstrated to describe the operator learning curve. Results In 24 of 30 (80%) patients studied, CO measures were obtained. In 6 of 30 (20%) patients, an adequate USCOM signal was not achieved. The mean difference (±standard deviation) between USCOM and PAC, USCOM and Fick, and Fick and PAC CO were small, −0.34 ± 0.52 L/min, −0.33 ± 0.90 L/min and −0.25 ± 0.63 L/min respectively across a range of outputs from 2.6 L/min to 7.2 L/min. The percent limits of agreement (LOA) for all measures were −34.6% to 17.8% for USCOM and PAC, −49.8% to 34.1% for USCOM and Fick and −36.4% to 23.7% for PAC and Fick. Signal acquisition time reduced on average by 0.6 min per measure to less than 10 min at the end of the study. Conclusions In 80% of our cohort, USCOM, PAC and Fick measures of CO all showed clinically acceptable agreement and the learning curve for operation of the non-invasive USCOM device by an ICU RN was found to be satisfactorily short. Further work is required in patients receiving positive pressure ventilation.
Resumo:
This document provides a review of international and national practices in investment decision support tools in road asset management. Efforts were concentrated on identifying analytic frameworks, evaluation methodologies and criteria adopted by current tools. Emphasis was also given to how current approaches support Triple Bottom Line decision-making. Benefit Cost Analysis and Multiple Criteria Analysis are principle methodologies in supporting decision-making in Road Asset Management. The complexity of the applications shows significant differences in international practices. There is continuing discussion amongst practitioners and researchers regarding to which one is more appropriate in supporting decision-making. It is suggested that the two approaches should be regarded as complementary instead of competitive means. Multiple Criteria Analysis may be particularly helpful in early stages of project development, say strategic planning. Benefit Cost Analysis is used most widely for project prioritisation and selecting the final project from amongst a set of alternatives. Benefit Cost Analysis approach is useful tool for investment decision-making from an economic perspective. An extension of the approach, which includes social and environmental externalities, is currently used in supporting Triple Bottom Line decision-making in the road sector. However, efforts should be given to several issues in the applications. First of all, there is a need to reach a degree of commonality on considering social and environmental externalities, which may be achieved by aggregating the best practices. At different decision-making level, the detail of consideration of the externalities should be different. It is intended to develop a generic framework to coordinate the range of existing practices. The standard framework will also be helpful in reducing double counting, which appears in some current practices. Cautions should also be given to the methods of determining the value of social and environmental externalities. A number of methods, such as market price, resource costs and Willingness to Pay, are found in the review. The use of unreasonable monetisation methods in some cases has discredited Benefit Cost Analysis in the eyes of decision makers and the public. Some social externalities, such as employment and regional economic impacts, are generally omitted in current practices. This is due to the lack of information and credible models. It may be appropriate to consider these externalities in qualitative forms in a Multiple Criteria Analysis. Consensus has been reached in considering noise and air pollution in international practices. However, Australia practices generally omitted these externalities. Equity is an important consideration in Road Asset Management. The considerations are either between regions, or social groups, such as income, age, gender, disable, etc. In current practice, there is not a well developed quantitative measure for equity issues. More research is needed to target this issue. Although Multiple Criteria Analysis has been used for decades, there is not a generally accepted framework in the choice of modelling methods and various externalities. The result is that different analysts are unlikely to reach consistent conclusions about a policy measure. In current practices, some favour using methods which are able to prioritise alternatives, such as Goal Programming, Goal Achievement Matrix, Analytic Hierarchy Process. The others just present various impacts to decision-makers to characterise the projects. Weighting and scoring system are critical in most Multiple Criteria Analysis. However, the processes of assessing weights and scores were criticised as highly arbitrary and subjective. It is essential that the process should be as transparent as possible. Obtaining weights and scores by consulting local communities is a common practice, but is likely to result in bias towards local interests. Interactive approach has the advantage in helping decision-makers elaborating their preferences. However, computation burden may result in lose of interests of decision-makers during the solution process of a large-scale problem, say a large state road network. Current practices tend to use cardinal or ordinal scales in measure in non-monetised externalities. Distorted valuations can occur where variables measured in physical units, are converted to scales. For example, decibels of noise converts to a scale of -4 to +4 with a linear transformation, the difference between 3 and 4 represents a far greater increase in discomfort to people than the increase from 0 to 1. It is suggested to assign different weights to individual score. Due to overlapped goals, the problem of double counting also appears in some of Multiple Criteria Analysis. The situation can be improved by carefully selecting and defining investment goals and criteria. Other issues, such as the treatment of time effect, incorporating risk and uncertainty, have been given scant attention in current practices. This report suggested establishing a common analytic framework to deal with these issues.
Resumo:
It has been proposed that body image disturbance is a form of cognitive bias wherein schemas for self-relevant information guide the selective processing of appearancerelated information in the environment. This threatening information receives disproportionately more attention and memory, as measured by an Emotional Stroop and incidental recall task. The aim of this thesis was to expand the literature on cognitive processing biases in non-clinical males and females by incorporating a number of significant methodological refinements. To achieve this aim, three phases of research were conducted. The initial two phases of research provided preliminary data to inform the development of the main study. Phase One was a qualitative exploration of body image concerns amongst males and females recruited through the general community and from a university. Seventeen participants (eight male; nine female) provided information on their body image and what factors they saw as positively and negatively impacting on their self evaluations. The importance of self esteem, mood, health and fitness, and recognition of the social ideal were identified as key themes. These themes were incorporated as psycho-social measures and Stroop word stimuli in subsequent phases of the research. Phase Two involved the selection and testing of stimuli to be used in the Emotional Stroop task. Six experimental categories of words were developed that reflected a broad range of health and body image concerns for males and females. These categories were high and low calorie food words, positive and negative appearance words, negative emotion words, and physical activity words. Phase Three addressed the central aim of the project by examining cognitive biases for body image information in empirically defined sub-groups. A National sample of males (N = 55) and females (N = 144), recruited from the general community and universities, completed an Emotional Stroop task, incidental memory test, and a collection of psycho-social questionnaires. Sub-groups of body image disturbance were sought using a cluster analysis, which identified three sub-groups in males (Normal, Dissatisfied, and Athletic) and four sub-groups in females (Normal, Health Conscious, Dissatisfied, and Symptomatic). No differences were noted between the groups in selective attention, although time taken to colour name the words was associated with some of the psycho-social variables. Memory biases found across the whole sample for negative emotion, low calorie food, and negative appearance words were interpreted as reflecting the current focus on health and stigma against being unattractive. Collectively these results have expanded our understanding of processing biases in the general community by demonstrating that the processing biases are found within non-clinical samples and that not all processing biases are associated with negative functionality
Resumo:
The evidence provided in this book allows us to conclude that the context of 'new managerialism', which embraced managerial efficiency and effectiveness through bureaucracy and accountability as key levers for meeting higher community expectations and reforming schools, has failed. It also allows us to conclude that it is time that the professionals, the school leaders, ensure that what happens in schools, now and in the future, is what they want to happen. The professionals need to re-establish their individual and collective educational agency. The major professional challenge for any school leader is overcoming the gap between dependence in, or a feeling of, the inevitability of political, system or bureaucracies being the means of achieving what they want, and actively working to implement their preferred model of schools as social centres, learning organisations or professional learning communities (see chapters in this book and Mulford, 2008).