380 resultados para association football
Resumo:
A pressing concern within the literature on anticipatory perceptual-motor behaviour is the lack of clarity on the applicability of data, observed under video-simulation task constraints, to actual performance in which actions are coupled to perception, as captured during in-situ experimental conditions. We developed an in-situ experimental paradigm which manipulated the duration of anticipatory visual information from a penalty taker’s actions to examine experienced goalkeepers’ vulnerability to deception for the penalty kick in association football. Irrespective of the penalty taker’s kick strategy, goalkeepers initiated movement responses earlier across consecutively earlier presentation points. Overall goalkeeping performance was better in non-deception trials than in deception conditions. In deception trials, the kinematic information presented up until the penalty taker initiated his/her kicking action had a negative effect on goalkeepers’ performance. It is concluded that goalkeepers are likely to benefit from not anticipating a penalty taker’s performance outcome based on information from the run-up, in preference to later information that emerges just before the initiation of the penalty taker’s kicking action.
Resumo:
Recent perceptual-motor studies have revealed variations in learning trajectories of novices. Despite such observation, relatively little attention has been paid to studying individual differences in experienced performers’ perceptual-motor behaviors. The present study examined individual differences for a visual anticipation task. Experienced association football goalkeepers attempted to intercept penalty kicks taken with deceptive and non-deceptive kicking actions. Data revealed that differences in the action capabilities of goalkeepers affected the timing and accuracy of movement response behaviors. Faster goalkeepers tended to wait until later before initiating movement in comparison with slower goalkeepers. The study of affordances in sport environments offers a theoretical framework with which to overcome some of the reported methodological limitations in the visual anticipation literature.
Resumo:
This paper analyzes effects of different practice task constraints on heart rate (HR) variability during 4v4 smallsided football games. Participants were sixteen football players divided into two age groups (U13, Mean age: 12.4±0.5 yrs; U15: 14.6±0.5). The task consisted of a 4v4 sub-phase without goalkeepers, on a 25x15 m field, of 15 minutes duration with an active recovery period of 6 minutes between each condition. We recorded players’ heart rates using heart rate monitors (Polar Team System, Polar Electro, Kempele, Finland) as scoring mode was manipulated (line goal: scoring by dribbling past an extended line; double goal: scoring in either of two lateral goals; and central goal: scoring only in one goal). Subsequently, %HR reserve was calculated with the Karvonen formula. We performed a time-series analysis of HR for each individual in each condition. Mean data for intra-participant variability showed that autocorrelation function was associated with more short-range dependence processes in the “line goal” condition, compared to other conditions, demonstrating that the “line goal” constraint induced more randomness in HR response. Relative to inter-individual variability, line goal constraints demonstrated lower %CV and %RMSD (U13: 9% and 19%; U15: 10% and 19%) compared with double goal (U13: 12% and 21%; U15: 12% and 21%) and central goal (U13: 14% and 24%; U15: 13% and 24%) task constraints, respectively. Results suggested that line goal constraints imposed more randomness on cardiovascular stimulation of each individual and lower inter-individual variability than double goal and central goal constraints.
Dynamics of attacker–defender dyads in Association Football : parameters influencing decision-making
Resumo:
Previous work on pattern-forming dynamics of team sports has investigated sub-phases of basketball and rugby union by focussing on one-versus-one (1v1) attacker-defender dyads. This body of work has identified the role of candidate control parameters, interpersonal distance and relative velocity, in predicting the outcomes of team player interactions. These two control parameters have been described as functioning in a nested relationship where relative velocity between players comes to the fore within a critical range of interpersonal distance. The critical influence of constraints on the intentionality of player behaviour has also been identified through the study of 1v1 attacker-defender dyads. This thesis draws from previous work adopting an ecological dynamics approach, which encompasses both Dynamical Systems Theory and Ecological Psychology concepts, to describe attacker-defender interactions in 1v1 dyads in association football. Twelve male youth association football players (average age 15.3 ± 0.5 yrs) performed as both attackers and defenders in 1v1 dyads in three field positions in an experimental manipulation of the proximity to goal and the role of players. Player and ball motion was tracked using TACTO 8.0 software (Fernandes & Caixinha, 2003) to produce two-dimensional (2D) trajectories of players and the ball on the ground. Significant differences were found for player-to-ball interactions depending on proximity to goal manipulations, indicating how key reference points in the environment such as the location of the goal may act as a constraint that shapes decision-making behaviour. Results also revealed that interpersonal distance and relative velocity alone were insufficient for accurately predicting the outcome of a dyad in association football. Instead, combined values of interpersonal distance, ball-to-defender distance, attacker-to-ball distance, attacker-to-ball relative velocity and relative angles were found to indicate the state of dyad outcomes.
Resumo:
Performance of locomotor pointing tasks (goal-directed locomotion) in sport is typically constrained by dynamic factors, such as positioning of opponents and objects for interception. In the team sport of association football, performers have to coordinate their gait with ball displacement when dribbling and when trying to prevent opponent interception when running to kick a ball. This thesis comprises two studies analysing the movement patterns during locomotor pointing of eight experienced youth football players under static and dynamic constraints by manipulating levels of ball displacement (ball stationary or moving) and defensive pressure (defenders absent, or positioned near or far during performance). ANOVA with repeated measures was used to analyse effects of these task constraints on gait parameters during the run-up and cross performance sub-phase. Experiment 1 revealed outcomes consistent with previous research on locomotor pointing. When under defensive pressure, participants performed the run-up more quickly, concurrently modifying footfall placements relative to the ball location over trials. In experiment 2 players coordinated their gait relative to a moving ball significantly differently when under defensive pressure. Despite no specific task instructions being provided beforehand, context dependent constraints interacted to influence footfall placements over trials and running velocity of participants in different conditions. Data suggest that coaches need to manipulate task constraints carefully to facilitate emergent movement behaviours during practice in team games like football.
Resumo:
Quantitative analysis is increasingly being used in team sports to better understand performance in these stylized, delineated, complex social systems. Here we provide a first step toward understanding the pattern-forming dynamics that emerge from collective offensive and defensive behavior in team sports. We propose a novel method of analysis that captures how teams occupy sub-areas of the field as the ball changes location. We used the method to analyze a game of association football (soccer) based upon a hypothesis that local player numerical dominance is key to defensive stability and offensive opportunity. We found that the teams consistently allocated more players than their opponents in sub-areas of play closer to their own goal. This is consistent with a predominantly defensive strategy intended to prevent yielding even a single goal. We also find differences between the two teams' strategies: while both adopted the same distribution of defensive, midfield, and attacking players (a 4:3:3 system of play), one team was significantly more effective both in maintaining defensive and offensive numerical dominance for defensive stability and offensive opportunity. That team indeed won the match with an advantage of one goal (2 to 1) but the analysis shows the advantage in play was more pervasive than the single goal victory would indicate. Our focus on the local dynamics of team collective behavior is distinct from the traditional focus on individual player capability. It supports a broader view in which specific player abilities contribute within the context of the dynamics of multiplayer team coordination and coaching strategy. By applying this complex system analysis to association football, we can understand how players' and teams' strategies result in successful and unsuccessful relationships between teammates and opponents in the area of play.
Resumo:
This study investigated movement synchronization of players within and between teams during competitive association football performance. Cluster phase analysis was introduced as a method to assess synchronies between whole teams and between individual players with their team as a function of time, ball possession and field direction. Measures of dispersion (SD) and regularity (sample entropy – SampEn – and cross sample entropy – Cross-SampEn) were used to quantify the magnitude and structure of synchrony. Large synergistic relations within each professional team sport collective were observed, particularly in the longitudinal direction of the field (0.89 ± 0.12) compared to the lateral direction (0.73 ± 0.16, p < .01). The coupling between the group measures of the two teams also revealed that changes in the synchrony of each team were intimately related (Cross-SampEn values of 0.02 ± 0.01). Interestingly, ball possession did not influence team synchronization levels. In player–team synchronization, individuals tended to be coordinated under near in-phase modes with team behavior (mean ranges between −7 and 5° of relative phase). The magnitudes of variations were low, but more irregular in time, for the longitudinal (SD: 18 ± 3°; SampEn: 0.07 ± 0.01), compared to the lateral direction (SD: 28 ± 5°; SampEn: 0.06 ± 0.01, p < .05) on-field. Increases in regularity were also observed between the first (SampEn: 0.07 ± 0.01) and second half (SampEn: 0.06 ± 0.01, p < .05) of the observed competitive game. Findings suggest that the method of analysis introduced in the current study may offer a suitable tool for examining team’s synchronization behaviors and the mutual influence of each team’s cohesiveness in competing social collectives.
Resumo:
There have been different approaches to studying penalty-kick performance in association football. In this paper, the authors synthesize key findings within an ecological dynamics theoretical framework. According to this theoretical perspective, information is the cornerstone for understanding the dynamics of action regulation in penalty-kick performance. Research suggests that investigators need to identify the information sources that are most relevant to penalty-kick performance. An important task is to understand how constraints can channel (i.e. change, emphasize or mask) information sources used to regulate upcoming actions and how the influence of these constraints is expressed in players' behavioural dynamics. Due to the broad range of constraints influencing penalty-kick performance, it is recommended that future research adopts an interdisciplinary focus on performance assessment to overcome the current lack of representativeness in penalty-kick experimental designs. Such an approach would serve to capture the information-based control of action of both players as components of this dyadic system in competitive sport.
Resumo:
This study investigated changes in the complexity (magnitude and structure of variability) of the collective behaviours of association football teams during competitive performance. Raw positional data from an entire competitive match between two professional teams were obtained with the ProZone® tracking system. Five compound positional variables were used to investigate the collective patterns of performance of each team including: surface area, stretch index, team length, team width, and geometrical centre. Analyses involve the coefficient of variation (%CV) and approximate entropy (ApEn), as well as the linear association between both parameters. Collective measures successfully captured the idiosyncratic behaviours of each team and their variations across the six time periods of the match. Key events such as goals scored and game breaks (such as half time and full time) seemed to influence the collective patterns of performance. While ApEn values significantly decreased during each half, the %CV increased. Teams seem to become more regular and predictable, but with increased magnitudes of variation in their organisational shape over the natural course of a match.
Resumo:
The role of ecological constraints on the acquisition of sport expertise is gaining attention in sport science, although more research is needed. In this position paper we provide an ecological explanation for expertise acquisition, as alluding to qualitative data that support the idea that unconventional, even aversive, environmental constraints may play an important role in the development of world-class athletes. We exemplify this argument by profiling the role of unconventional practice environments using association football in Brazilian society as a task vehicle. Contrary to the traditional idea that only deliberate training and development programmes can lead to the evolution of expertise, we propose how expert performance might be gained through highly unstructured activities in Brazilian football, that represent a powerful and little understood implicit environmental constraint that can lead to expertise development in sport.
Resumo:
Gaze and movement behaviors of association football goalkeepers were compared under two video simulation conditions (i.e., verbal and joystick movement responses) and three in situ conditions (i.e., verbal, simplified body movement, and interceptive response). The results showed that the goalkeepers spent more time fixating on information from the penalty kick taker’s movements than ball location for all perceptual judgment conditions involving limited movement (i.e., verbal responses, joystick movement, and simplified body movement). In contrast, an equivalent amount of time was spent fixating on the penalty taker’s relative motions and the ball location for the in situ interception condition, which required the goalkeepers to attempt to make penalty saves. The data suggest that gaze and movement behaviors function differently, depending on the experimental task constraints selected for empirical investigations. These findings highlight the need for research on perceptual— motor behaviors to be conducted in representative experimental conditions to allow appropriate generalization of conclusions to performance environments.
Resumo:
Russell, Benton and Kingsley (2010) recently suggested a new association football test comprising three different tasks for the evaluation of players' passing, dribbling and shooting skills. Their stated intention was to enhance ‘ecological validity’ of current association football skills tests allowing generalisation of results from the new protocols to performance constraints that were ‘representative’ of experiences during competitive game situations. However, in this comment we raise some concerns with their use of the term ‘ecological validity’ to allude to aspects of ‘representative task design’. We propose that in their paper the authors confused understanding of environmental properties, performance achievement and generalisability of the test and its outcomes. Here, we argue that the tests designed by Russell and colleagues did not include critical sources of environmental information, such as the active role of opponents, which players typically use to organise their actions during performance. Static tasks which are not representative of the competitive performance environment may lead to different emerging patterns of movement organisation and performance outcomes, failing to effectively evaluate skills performance in sport.
Resumo:
The influence of different instructional constraints on movement organisation and performance outcomes of the penalty kick (PK) was investigated according to participant age. Sixty penalty takers and twelve goalkeepers from two age groups (under 15 and under 17) performed 300 PKs under five different task conditions, including: no explicit instructional constraints provided (Control); instructional constraints on immobility (IMMOBILE) and mobility (MOBILE) of goalkeepers; and, use of keeper-dependent (DEP) and independent (INDEP) strategies by penalty takers. Every trial was video recorded and digitised using motion analysis techniques. Dependent variables (DVs) were: movement speed of penalty takers and the angles between the goalkeeper's position and the goal line (i.e., diving angle), and between the penalty taker and a line crossing the penalty spot and the centre of the goal (i.e., run up angle). Instructions significantly influenced the way that goalkeepers (higher values in MOBILE relative to Control) and penalty takers (higher values in Control than in DEP) used movement speed during performance, as well as the goalkeepers' movements and diving angle (less pronounced dives in the MOBILE condition compared with INDEP). Results showed how different instructions constrained participant movements during performance, although players' performance efficacy remained constant, reflecting their adaptive variability.
Resumo:
How and why football referees made decisions was investigated. A constructivist grounded theory methodology was undertaken to tap into the experiential knowledge of referees. The participant cohort comprised 7 A-League referees (aged 23 to 35) and 8 local Brisbane league referees (aged 20 to 50), spanning the lowest to highest levels of competition in men’s football in Australia. Results found that referees used ‘four pillars’ to underpin their judgments, these were conceptual notions of: safety, fairness, accuracy and entertainment. A fifth pillar ‘consistency’ referred to the referee’s ‘contextual sensitivity’. Results were explained using an ecological dynamics framework that emphasises the individual-environment scale of analysis. It was concluded that interacting constraints shape emergent decision-making in referees which are nested in task goals.