124 resultados para approximate membership extraction
Resumo:
In this paper, we propose a search-based approach to join two tables in the absence of clean join attributes. Non-structured documents from the web are used to express the correlations between a given query and a reference list. To implement this approach, a major challenge we meet is how to efficiently determine the number of times and the locations of each clean reference from the reference list that is approximately mentioned in the retrieved documents. We formalize the Approximate Membership Localization (AML) problem and propose an efficient partial pruning algorithm to solve it. A study using real-word data sets demonstrates the effectiveness of our search-based approach, and the efficiency of our AML algorithm.
Resumo:
This paper introduces PartSS, a new partition-based fil- tering for tasks performing string comparisons under edit distance constraints. PartSS offers improvements over the state-of-the-art method NGPP with the implementation of a new partitioning scheme and also improves filtering abil- ities by exploiting theoretical results on shifting and scaling ranges, thus accelerating the rate of calculating edit distance between strings. PartSS filtering has been implemented within two major tasks of data integration: similarity join and approximate membership extraction under edit distance constraints. The evaluation on an extensive range of real-world datasets demonstrates major gain in efficiency over NGPP and QGrams approaches.
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.