71 resultados para air temperature and relative humidity
Resumo:
BACKGROUND: A number of epidemiological studies have examined the adverse effect of air pollution on mortality and morbidity. Also, several studies have investigated the associations between air pollution and specific-cause diseases including arrhythmia, myocardial infarction, and heart failure. However, little is known about the relationship between air pollution and the onset of hypertension. OBJECTIVE: To explore the risk effect of particulate matter air pollution on the emergency hospital visits (EHVs) for hypertension in Beijing, China. METHODS: We gathered data on daily EHVs for hypertension, fine particulate matter less than 2.5 microm in aerodynamic diameter (PM(2.5)), particulate matter less than 10 microm in aerodynamic diameter (PM(10)), sulfur dioxide, and nitrogen dioxide in Beijing, China during 2007. A time-stratified case-crossover design with distributed lag model was used to evaluate associations between ambient air pollutants and hypertension. Daily mean temperature and relative humidity were controlled in all models. RESULTS: There were 1,491 EHVs for hypertension during the study period. In single pollutant models, an increase in 10 microg/m(3) in PM(2.5) and PM(10) was associated with EHVs for hypertension with odds ratios (overall effect of five days) of 1.084 (95% confidence interval (CI): 1.028, 1.139) and 1.060% (95% CI: 1.020, 1.101), respectively. CONCLUSION: Elevated levels of ambient particulate matters are associated with an increase in EHVs for hypertension in Beijing, China.
Resumo:
Background: A number of epidemiological studies have been conducted to research the adverse effects of air pollution on mortality and morbidity. Hypertension is the most important risk factor for cardiovascular mortality. However, few previous studies have examined the relationship between gaseous air pollution and morbidity for hypertension. ---------- Methods: Daily data on emergency hospital visits (EHVs) for hypertension were collected from the Peking University Third Hospital. Daily data on gaseous air pollutants (sulfur dioxide (SO2) and nitrogen dioxide (NO2)) and particulate matter less than 10 μm in aerodynamic diameter (PM10) were collected from the Beijing Municipal Environmental Monitoring Center. A time-stratified case-crossover design was conducted to evaluate the relationship between urban gaseous air pollution and EHVs for hypertension. Temperature and relative humidity were controlled for. ---------- Results: In the single air pollutant models, a 10 μg/m3 increase in SO2 and NO2 were significantly associated with EHVs for hypertension. The odds ratios (ORs) were 1.037 (95% confidence interval (CI): 1.004-1.071) for SO2 at lag 0 day, and 1.101 (95% CI: 1.038-1.168) for NO2 at lag 3 day. After controlling for PM10, the ORs associated with SO2 and NO2 were 1.025 (95% CI: 0.987-1.065) and 1.114 (95% CI: 1.037-1.195), respectively.---------- Conclusion: Elevated urban gaseous air pollution was associated with increased EHVs for hypertension in Beijing, China.
Resumo:
The health impacts of exposure to ambient temperature have been drawing increasing attention from the environmental health research community, government, society, industries, and the public. Case-crossover and time series models are most commonly used to examine the effects of ambient temperature on mortality. However, some key methodological issues remain to be addressed. For example, few studies have used spatiotemporal models to assess the effects of spatial temperatures on mortality. Few studies have used a case-crossover design to examine the delayed (distributed lag) and non-linear relationship between temperature and mortality. Also, little evidence is available on the effects of temperature changes on mortality, and on differences in heat-related mortality over time. This thesis aimed to address the following research questions: 1. How to combine case-crossover design and distributed lag non-linear models? 2. Is there any significant difference in effect estimates between time series and spatiotemporal models? 3. How to assess the effects of temperature changes between neighbouring days on mortality? 4. Is there any change in temperature effects on mortality over time? To combine the case-crossover design and distributed lag non-linear model, datasets including deaths, and weather conditions (minimum temperature, mean temperature, maximum temperature, and relative humidity), and air pollution were acquired from Tianjin China, for the years 2005 to 2007. I demonstrated how to combine the case-crossover design with a distributed lag non-linear model. This allows the case-crossover design to estimate the non-linear and delayed effects of temperature whilst controlling for seasonality. There was consistent U-shaped relationship between temperature and mortality. Cold effects were delayed by 3 days, and persisted for 10 days. Hot effects were acute and lasted for three days, and were followed by mortality displacement for non-accidental, cardiopulmonary, and cardiovascular deaths. Mean temperature was a better predictor of mortality (based on model fit) than maximum or minimum temperature. It is still unclear whether spatiotemporal models using spatial temperature exposure produce better estimates of mortality risk compared with time series models that use a single site’s temperature or averaged temperature from a network of sites. Daily mortality data were obtained from 163 locations across Brisbane city, Australia from 2000 to 2004. Ordinary kriging was used to interpolate spatial temperatures across the city based on 19 monitoring sites. A spatiotemporal model was used to examine the impact of spatial temperature on mortality. A time series model was used to assess the effects of single site’s temperature, and averaged temperature from 3 monitoring sites on mortality. Squared Pearson scaled residuals were used to check the model fit. The results of this study show that even though spatiotemporal models gave a better model fit than time series models, spatiotemporal and time series models gave similar effect estimates. Time series analyses using temperature recorded from a single monitoring site or average temperature of multiple sites were equally good at estimating the association between temperature and mortality as compared with a spatiotemporal model. A time series Poisson regression model was used to estimate the association between temperature change and mortality in summer in Brisbane, Australia during 1996–2004 and Los Angeles, United States during 1987–2000. Temperature change was calculated by the current day's mean temperature minus the previous day's mean. In Brisbane, a drop of more than 3 �C in temperature between days was associated with relative risks (RRs) of 1.16 (95% confidence interval (CI): 1.02, 1.31) for non-external mortality (NEM), 1.19 (95% CI: 1.00, 1.41) for NEM in females, and 1.44 (95% CI: 1.10, 1.89) for NEM aged 65.74 years. An increase of more than 3 �C was associated with RRs of 1.35 (95% CI: 1.03, 1.77) for cardiovascular mortality and 1.67 (95% CI: 1.15, 2.43) for people aged < 65 years. In Los Angeles, only a drop of more than 3 �C was significantly associated with RRs of 1.13 (95% CI: 1.05, 1.22) for total NEM, 1.25 (95% CI: 1.13, 1.39) for cardiovascular mortality, and 1.25 (95% CI: 1.14, 1.39) for people aged . 75 years. In both cities, there were joint effects of temperature change and mean temperature on NEM. A change in temperature of more than 3 �C, whether positive or negative, has an adverse impact on mortality even after controlling for mean temperature. I examined the variation in the effects of high temperatures on elderly mortality (age . 75 years) by year, city and region for 83 large US cities between 1987 and 2000. High temperature days were defined as two or more consecutive days with temperatures above the 90th percentile for each city during each warm season (May 1 to September 30). The mortality risk for high temperatures was decomposed into: a "main effect" due to high temperatures using a distributed lag non-linear function, and an "added effect" due to consecutive high temperature days. I pooled yearly effects across regions and overall effects at both regional and national levels. The effects of high temperature (both main and added effects) on elderly mortality varied greatly by year, city and region. The years with higher heat-related mortality were often followed by those with relatively lower mortality. Understanding this variability in the effects of high temperatures is important for the development of heat-warning systems. In conclusion, this thesis makes contribution in several aspects. Case-crossover design was combined with distribute lag non-linear model to assess the effects of temperature on mortality in Tianjin. This makes the case-crossover design flexibly estimate the non-linear and delayed effects of temperature. Both extreme cold and high temperatures increased the risk of mortality in Tianjin. Time series model using single site’s temperature or averaged temperature from some sites can be used to examine the effects of temperature on mortality. Temperature change (no matter significant temperature drop or great temperature increase) increases the risk of mortality. The high temperature effect on mortality is highly variable from year to year.
Resumo:
Background: In sub-tropical and tropical Queensland, a legacy of poor housing design,minimal building regulations with few compliance measures, an absence of post-construction performance evaluation and various social and market factors has led to a high and growing penetration of, and reliance on, air conditioners to provide thermal comfort for occupants. The pervasive reliance on air conditioners has arguably impacted on building forms, changed cultural expectations of comfort and social practices for achieving comfort, and may have resulted in a loss of skills in designing and constructing high performance building envelopes. Aim: The aim of this paper is to report on initial outcomes of a project that sought to determine how the predicted building thermal performance of twenty-five houses in subtropical and tropical Queensland compared with objective performance measures and comfort performance as perceived by occupants. The purpose of the project was to shed light on the role of various supply chain agents in the realisation of thermal performance outcomes. Methodology: The case study methodology embraced a socio-technical approach incorporating building science and sociology. Building simulation was used to model thermal performance under controlled comfort assumptions and adaptive comfort conditions. Actual indoor climate conditions were measured by temperature and relative humidity sensors placed throughout each house, whilst occupants’ expectations of thermal comfort and their self-reported behaviours were gathered through semi-structured interviews and periodic comfort surveys. Thermal imaging and air infiltration tests, along with building design documents, were analysed to evaluate the influence of various supply chain agents on the actual performance outcomes. Results: The results clearly show that in the housing supply chain – from designer to constructor to occupant – there is limited understanding from each agent of their role in contributing to, or inhibiting, occupants’ comfort.
Resumo:
This project was conducted at Lithgow Correctional Centre (LCC), NSW, Australia. Air quality field measurements were conducted on two occasions (23-27 May 2012, and 3-8 December 2012), just before and six months after the introduction of smoke free buildings policies (28 May 2012) at the LCC, respectively. The main aims of this project were to: (1) investigate the indoor air quality; (2) quantify the level of exposure to environmental tobacco smoke (ETS); (3) identify the main indoor particle sources; (4) distinguish between PM2.5 / particle number from ETS, as opposed to other sources; and (5) provide recommendations for improving indoor air quality and/or minimising exposure at the LCC. The measurements were conducted in Unit 5.2A, Unit 5.2B, Unit 1.1 and Unit 3.1, together with personal exposure measurements, based on the following parameters: -Indoor and outdoor particle number (PN) concentration in the size range 0.005-3 µm -Indoor and outdoor PM2.5 particle mass concentration -Indoor and outdoor VOC concentrations -Personal particle number exposure levels (in the size range 0.01-0.3 µm) -Indoor and outdoor CO and CO2 concentrations, temperature and relative humidity In order to enhance the outcomes of this project, the indoor and outdoor particle number (PN) concentrations were measured by two additional instruments (CPC 3787) which were not listed in the original proposal.
Resumo:
Though increased particulate air pollution has been consistently associated with elevated mortality, evidence regarding whether diminished particulate air pollution would lead to mortality reduction is limited. Citywide air pollution mitigation program during the 2010 Asian Games in Guangzhou, China, provided such an opportunity. Daily mortality from non-accidental, cardiovascular and respiratory diseases was compared for 51 intervention days (November 1–December 21) in 2010 with the same calendar date of baseline years (2006–2009 and 2011). Relative risk (RR) and 95% confidence interval (95% CI) were estimated using a time series Poisson model, adjusting for day of week, public holidays, daily mean temperature and relative humidity. Daily PM10 (particle with aerodynamic diameter less than 10 μm) decreased from 88.64 μg/m3 during the baseline period to 80.61 μg/m3 during the Asian Games period. Other measured air pollutants and weather variables did not differ substantially. Daily mortality from non-accidental, cardiovascular and respiratory diseases decreased from 32, 11 and 6 during the baseline period to 25, 8 and 5 during the Games period, the corresponding RR for the Games period compared with the baseline period was 0.79 (95% CI: 0.73–0.86), 0.77 (95% CI: 0.66–0.89) and 0.68 (95% CI: 0.57–0.80), respectively. No significant decreases were observed in other months of 2010 in Guangzhou and intervention period in two control cities. This finding supports the efforts to reduce air pollution and improve public health through transportation restriction and industrial emission control.
Resumo:
Singapore is located at the equator, with abundant supply of solar radiation, relatively high ambient temperature and relative humidity throughout the year. The meteorological conditions of Singapore are favourable for efficient operation of solar energy based systems. Solar assisted heat pump systems are built on the roof-top of National University of Singapore’s Faculty of Engineering. The objectives of this study include the design and performance evaluation of a solar assisted heat-pump system for water desalination, water heating and drying of clothes. Using MATLAB programming language, a 2-dimensional simulation model has been developed to conduct parametric studies on the system. The system shows good prospect to be implemented in both industrial and residential applications and would give new opportunities in replacing conventional energy sources with green renewable energy.
Resumo:
Dengue fever (DF) is a serious public health concern in many parts of the world. An increase in DF incidence has been observed globally over the past decades. Multiple factors including urbanisation, increased international travels and global climate change are thought to be responsible for increased DF. However, little research has been conducted in the Asia-Pacific region about the impact of these changes on dengue transmission. The overarching aim of this thesis is to explore the spatiotemporal pattern of DF transmission in the Asia-Pacific region and project the future risk of DF attributable to climate change. Annual data of DF outbreaks for sixteen countries in the Asia-Pacific region over the last fifty years were used in this study. The results show that the geographic range of DF in this region increased significantly over the study period. Thailand, Vietnam and Laos were identified as the highest risk areas and there was a southward expansion observed in the transmission pattern of DF which might have originated from Philippines or Thailand. Additionally, the detailed DF data were obtained and the space-time clustering of DF transmission was examined in Bangladesh. Monthly DF data were used for the entire country at the district level during 2000-2009. Dhaka district was identified as the most likely DF cluster in Bangladesh and several districts of the southern part of Bangladesh were identified as secondary clusters in the years 2000-2002. In order to examine the association between meteorological factors and DF transmission and to project the future risk of DF using different climate change scenarios, the climate-DF relationship was examined in Dhaka, Bangladesh. The results show that climate variability (particularly maximum temperature and relative humidity) was positively associated with DF transmission in Dhaka. The effects of climate variability were observed at a lag of four months which might help to potentially control and prevent DF outbreaks through effective vector management and community education. Based on the quantitative assessment of the climate-DF relationship, projected climate change will likely increase mosquito abundance and activity and DF in this area. Assuming a temperature increase of 3.3oC without any adaptation measures and significant changes in socio-economic conditions, the consequence will be devastating, with a projected annual increase of 16,030 cases in Dhaka, Bangladesh by the end of this century. Therefore, public health authorities need to be prepared for likely increase of DF transmission in this region. This study adds to the literature on the recent trends of DF and impacts of climate change on DF transmission. These findings may have significant public health implications for the control and prevention of DF, particularly in the Asia- Pacific region.
Resumo:
Although ambient air pollution exposure has been linked with poor health in many parts of the world, no previous study has investigated the effect on morbidity in the city of Adelaide, South Australia. To explore the association between particulate matter (PM) and hospitalisations, including respiratory and cardiovascular admissions in Adelaide, South Australia. Methods: For the study period September 2001 to October 2007, daily counts of all-cause, cardiovascular and respiratory hospital admissions were collected, as well as daily air quality data including concentrations of particulates, ozone and nitrogen dioxide. Visibility codes for presentweather conditions identified dayswhen airborne dust or smoke was observed. The associations between PM and hospitalisations were estimated using timestratified case-crossover analyses controlling for covariates including temperature, relative humidity, other pollutants, day of the week and public holidays. Mean PM10 concentrations were higher in the warm season, whereas PM2.5 concentrations were higher in the cool season. Hospital admissions were associated with PM10 in the cool season and with PM2.5 in both seasons. No significant effect of PM on all-age respiratory admissions was detected, however cardiovascular admissions were associated with both PM2.5 and PM10 in the cool season with the highest effects for PM2.5 (4.48%, 95% CI: 0.74%, 8.36% increase per 10 μg/m3 increase in PM2.5). These findings suggest that despite the city's relatively low levels of air pollution, PMconcentrations are associated with increases in morbidity in Adelaide. Further studies are needed to investigate the sources of PM which may be contributing to the higher cool season effects.
Resumo:
Previous studies have demonstrated the importance of weather variables in influencing the incidence of influenza. However, the role of air pollution is often ignored in identifying the environmental drivers of influenza. This research aims to examine the impacts of air pollutants and temperature on the incidence of pediatric influenza in Brisbane, Australia. Lab-confirmed daily data on influenza counts among children aged 0-14years in Brisbane from 2001 January 1st to 2008 December 31st were retrieved from Queensland Health. Daily data on maximum and minimum temperatures for the same period were supplied by the Australian Bureau of Meteorology. Winter was chosen as the main study season due to it having the highest pediatric influenza incidence. Four Poisson log-linear regression models, with daily pediatric seasonal influenza counts as the outcome, were used to examine the impacts of air pollutants (i.e., ozone (O3), particulate matter≤10μm (PM10) and nitrogen dioxide (NO2)) and temperature (using a moving average of ten days for these variables) on pediatric influenza. The results show that mean temperature (Relative risk (RR): 0.86; 95% Confidence Interval (CI): 0.82-0.89) was negatively associated with pediatric seasonal influenza in Brisbane, and high concentrations of O3 (RR: 1.28; 95% CI: 1.25-1.31) and PM10 (RR: 1.11; 95% CI: 1.10-1.13) were associated with more pediatric influenza cases. There was a significant interaction effect (RR: 0.94; 95% CI: 0.93-0.95) between PM10 and mean temperature on pediatric influenza. Adding the interaction term between mean temperature and PM10 substantially improved the model fit. This study provides evidence that PM10 needs to be taken into account when evaluating the temperature-influenza relationship. O3 was also an important predictor, independent of temperature.
Resumo:
The objective of this study is to examine the association between ambient temperature and children’s lung function in Baotou, China. We recruited 315 children (8–12 years) from Baotou, China in the spring of 2004, 2005, and 2006. They performed three successive forced expiratory measurements three times daily (morning, noon, and evening) for about 5 weeks. The highest peak expiratory flow (PEF) was recorded for each session. Daily data on ambient temperature, relative humidity, and air pollution were monitored during the same period. Mixed models with a distributed lag structure were used to examine the effects of temperature on lung function while adjusting for individual characteristics and environmental factors. Low temperatures were significantly associated with decreases in PEF. The effects lasted for lag 0–2 days. For all participants, the cumulative effect estimates (lag 0–2 days) were −1.44 (−1.93, −0.94) L/min, −1.39 (−1.92, −0.86) L/min, −1.40 (−1.97, −0.82) L/min, and −1.28 (−1.69, −0.88) L/min for morning, noon, evening, and daily mean PEF, respectively, associated with 1 °C decrease in daily mean temperature. Generally, the effects of temperature were slightly stronger in boys than in girls for noon, evening, and daily mean PEF, while the effects were stronger in girls for morning PEF. PM2.5 had joint effects with temperature on children’s PEF. Higher PM2.5 increased the impacts of low temperature. Low ambient temperatures are associated with lower lung function in children in Baotou, China. Preventive health policies will be required for protecting children from the cold weather.
Resumo:
This paper discusses and summarises a recent systematic study on the implication of global warming on air conditioned office buildings in Australia. Four areas are covered, including analysis of historical weather data, generation of future weather data for the impact study of global warming, projection of building performance under various global warming scenarios, and evaluation of various adaptation strategies under 2070 high global warming conditions. Overall, it is found that depending on the assumed future climate scenarios and the location considered, the increase of total building energy use for the sample Australian office building may range from 0.4 to 15.1%. When the increase of annual average outdoor temperature exceeds 2 °C, the risk of overheating will increase significantly. However, the potential overheating problem could be completely eliminated if internal load density is significantly reduced.
Resumo:
Exposure to cold air, whole body cryotherapy (WBC), is a novel treatment employed by athletes. In WBC individuals dressed in minimal clothing are exposed to a temperature below -100°C for 2-4 min. The use of WBC has been advocated as a treatment for various knee injuries. PURPOSE: To compare the effects of two modalities of cryotherapy, -110°C WBC and 8°C cold water immersion (CWI) on knee skin temperature (Tsk). METHODS: With ethical approval and written informed consent 10 healthy active male participants (26.5±4.9 yr, 183.5±6.0 cm, 90.7±19.9 kg, 26.8±5.0 kg/m2, 23.0±9.3% body fat (measured by DXA), 7.6 ± 2.0 mm patellar skin fold; mean±SD) were exposed to 4 min of CWI and WBC. The treatment order was randomised in a controlled crossover design, with a minimum of 7 days between treatments. During WBC participants stood in a chamber (-60±3°C) for 20 s before entering the main chamber (-110°C±3°C) where they remained for 3 min and 40 s. For CWI participants were seated in a tank filled with cold water (8±0.3°C) and immersed to the level of the sternum for 4 min. Right knee Tsk was assessed via non-contact, infrared thermal imaging. A quadrilateral region of interest was created using inert markers placed 5 cm above and below the most superior and inferior aspect of the patella. Tsk within this quadrilateral was recorded pre, immediately post and every 10 min thereafter for 60 min. Tsk changes were examined using a two-way (treatment x time) repeated measures analyses of variance. In addition, a paired sample t-test was used to compare baseline Tsk before both treatments. RESULTS: Knee Tsk was similar before treatment (WBC: 29.9±0.7°C, CWI: 29.6±0.9°C, p>0.05). There was a significant main effect for treatment (p<0.05) and time (p<0.001). Compared to baseline, Tsk was significantly reduced (p<0.05) immediately post and at 10, 20, 30, 40, 50 and 60 min after both cooling modalities. Knee Tsk was lower (p<0.05) immediately after WBC (19.0±0.9°C) compared to CWI (20.5±0.6°C). However, from 10 to 60 min post, knee Tsk was lower (p<0.05) following the CWI treatment. CONCLUSION: WBC elicited a greater decrease in knee Tsk compared to CWI immediately after treatment. However, both modalities display different recovery patterns and Tsk after CWI was significantly lower than WBC at 10, 20, 30, 40, 50 and 60 min after treatment.
Resumo:
The roles of weather variability and sunspots in the occurrence of cyanobacteria blooms, were investigated using cyanobacteria cell data collected from the Fred Haigh Dam, Queensland, Australia. Time series generalized linear model and classification and regression (CART) model were used in the analysis. Data on notified cell numbers of cyanobacteria and weather variables over the periods 2001 and 2005 were provided by the Australian Department of Natural Resources and Water, and Australian Bureau of Meteorology, respectively. The results indicate that monthly minimum temperature (relative risk [RR]: 1.13, 95% confidence interval [CI]: 1.02-1.25) and rainfall (RR: 1.11; 95% CI: 1.03-1.20) had a positive association, but relative humidity (RR: 0.94; 95% CI: 0.91-0.98) and wind speed (RR:0.90; 95% CI: 0.82-0.98) were negatively associated with the cyanobacterial numbers, after adjustment for seasonality and auto-correlation. The CART model showed that the cyanobacteria numbers were best described by an interaction between minimum temperature, relative humidity, and sunspot numbers. When minimum temperature exceeded 18%C and relative humidity was under 66%, the number of cyanobacterial cells rose by 2.15-fold. We conclude that the weather variability and sunspot activity may affect cyanobacterial blooms in dams.