421 resultados para acoustic monitoring
Resumo:
The requirement to monitor the rapid pace of environmental change due to global warming and to human development is producing large volumes of data but placing much stress on the capacity of ecologists to store, analyse and visualise that data. To date, much of the data has been provided by low level sensors monitoring soil moisture, dissolved nutrients, light intensity, gas composition and the like. However, a significant part of an ecologist’s work is to obtain information about species diversity, distributions and relationships. This task typically requires the physical presence of an ecologist in the field, listening and watching for species of interest. It is an extremely difficult task to automate because of the higher order difficulties in bandwidth, data management and intelligent analysis if one wishes to emulate the highly trained eyes and ears of an ecologist. This paper is concerned with just one part of the bigger challenge of environmental monitoring – the acquisition and analysis of acoustic recordings of the environment. Our intention is to provide helpful tools to ecologists – tools that apply information technologies and computational technologies to all aspects of the acoustic environment. The on-line system which we are building in conjunction with ecologists offers an integrated approach to recording, data management and analysis. The ecologists we work with have different requirements and therefore we have adopted the toolbox approach, that is, we offer a number of different web services that can be concatenated according to need. In particular, one group of ecologists is concerned with identifying the presence or absence of species and their distributions in time and space. Another group, motivated by legislative requirements for measuring habitat condition, are interested in summary indices of environmental health. In both case, the key issues are scalability and automation.
Resumo:
1. Autonomous acoustic recorders are widely available and can provide a highly efficient method of species monitoring, especially when coupled with software to automate data processing. However, the adoption of these techniques is restricted by a lack of direct comparisons with existing manual field surveys. 2. We assessed the performance of autonomous methods by comparing manual and automated examination of acoustic recordings with a field-listening survey, using commercially available autonomous recorders and custom call detection and classification software. We compared the detection capability, time requirements, areal coverage and weather condition bias of these three methods using an established call monitoring programme for a nocturnal bird, the little spotted kiwi(Apteryx owenii). 3. The autonomous recorder methods had very high precision (>98%) and required <3% of the time needed for the field survey. They were less sensitive, with visual spectrogram inspection recovering 80% of the total calls detected and automated call detection 40%, although this recall increased with signal strength. The areal coverage of the spectrogram inspection and automatic detection methods were 85% and 42% of the field survey. The methods using autonomous recorders were more adversely affected by wind and did not show a positive association between ground moisture and call rates that was apparent from the field counts. However, all methods produced the same results for the most important conservation information from the survey: the annual change in calling activity. 4. Autonomous monitoring techniques incur different biases to manual surveys and so can yield different ecological conclusions if sampling is not adjusted accordingly. Nevertheless, the sensitivity, robustness and high accuracy of automated acoustic methods demonstrate that they offer a suitable and extremely efficient alternative to field observer point counts for species monitoring.
Resumo:
This workshop was supported by the Australian Centre for Ecological Analysis and Synthesis (ACEAS, http://www.aceas.org.au/), a facility of the Australian Government-funded Terrestrial Ecosystem Research Network (http://www.tern.org.au/), a research infrastructure facility established under the National Collaborative Research Infrastructure Strategy and Education Infrastructure Fund - Super Science Initiative, through the Department of Industry, Innovation, Science, Research and Tertiary Education. Hosted by: Queensland University of Technology, Brisbane, Queensland. (QUT, http://www.qut.edu.au/) Dates: 8-11 May 2012 Report Editors: Prof Stuart Parsons (Uni. Auckland, NZ) and Dr Michael Towsey (QUT). This report is a compilation of notes and discussion summaries contributed by those attending the Workshop. They have been assembled into a logical order by the editors. Another report (with photographs) can be obtained at: http://www.aceas.org.au/index.php?option=com_content&view=article&id=94&Itemid=96
Resumo:
Bats are an important component of mammalian biodiversity and fill such a wide array of ecological niches that they may offer an important multisensory bioindicator role in assessing ecosystem health. There is a need to monitor population trends of bats for their own sake because many populations face numerous environmental threats related to climate change, habitat loss, fragmentation, hunting, and emerging diseases. To be able to establish bat ultrasonic biodiversity trends as a reliable indicator, it is important to standardize monitoring protocols, data management, and analyses. This chapter discusses the main issues to be considered in developing a bat ultrasonic indicator. It focuses on the results from indicator bats program (iBats), a system for the global acoustic monitoring of bats, in Eastern Europe. Finally, the chapter reviews the strengths and weaknesses of the Program and considers the opportunities and threats that it may face in the future.
Resumo:
This paper presents a system to analyze long field recordings with low signal-to-noise ratio (SNR) for bio-acoustic monitoring. A method based on spectral peak track, Shannon entropy, harmonic structure and oscillation structure is proposed to automatically detect anuran (frog) calling activity. Gaussian mixture model (GMM) is introduced for modelling those features. Four anuran species widespread in Queensland, Australia, are selected to evaluate the proposed system. A visualization method based on extracted indices is employed for detection of anuran calling activity which achieves high accuracy.
Resumo:
Climate change and human activity are subjecting the environment to unprecedented rates of change. Monitoring these changes is an immense task that demands new levels of automated monitoring and analysis. We propose the use of acoustics as a proxy for the time consuming auditing of fauna, especially for determining the presence/absence of species. Acoustic monitoring is deceptively simple; seemingly all that is required is a sound recorder. However there are many major challenges if acoustics are to be used for large scale monitoring of ecosystems. Key issues are scalability and automation. This paper discusses our approach to this important research problem. Our work is being undertaken in collaboration with ecologists interested both in identifying particular species and in general ecosystem health.
Resumo:
Summary 1. Acoustic methods are used increasingly to survey and monitor bat populations. However, the use of acoustic methods at continental scales can be hampered by the lack of standardized and objective methods to identify all species recorded. This makes comparable continent-wide monitoring difficult, impeding progress towards developing biodiversity indicators, transboundary conservation programmes and monitoring species distribution changes. 2. Here we developed a continental-scale classifier for acoustic identification of bats, which can be used throughout Europe to ensure objective, consistent and comparable species identifications. We selected 1350 full-spectrum reference calls from a set of 15 858 calls of 34 European species, from EchoBank, a global echolocation call library. We assessed 24 call parameters to evaluate how well they distinguish between species and used the 12 most useful to train a hierarchy of ensembles of artificial neural networks to distinguish the echolocation calls of these bat species. 3. Calls are first classified to one of five call-type groups, with a median accuracy of 97·6%. The median species-level classification accuracy is 83·7%, providing robust classification for most European species, and an estimate of classification error for each species. 4. These classifiers were packaged into an online tool, iBatsID, which is freely available, enabling anyone to classify European calls in an objective and consistent way, allowing standardized acoustic identification across the continent. 5. Synthesis and applications. iBatsID is the first freely available and easily accessible continental- scale bat call classifier, providing the basis for standardized, continental acoustic bat monitoring in Europe. This method can provide key information to managers and conservation planners on distribution changes and changes in bat species activity through time.
Resumo:
Bioacoustic data can be used for monitoring animal species diversity. The deployment of acoustic sensors enables acoustic monitoring at large temporal and spatial scales. We describe a content-based birdcall retrieval algorithm for the exploration of large data bases of acoustic recordings. In the algorithm, an event-based searching scheme and compact features are developed. In detail, ridge events are detected from audio files using event detection on spectral ridges. Then event alignment is used to search through audio files to locate candidate instances. A similarity measure is then applied to dimension-reduced spectral ridge feature vectors. The event-based searching method processes a smaller list of instances for faster retrieval. The experimental results demonstrate that our features achieve better success rate than existing methods and the feature dimension is greatly reduced.
Resumo:
This paper investigates engaging experienced birders, as volunteer citizen scientists, to analyze large recorded audio datasets gathered through environmental acoustic monitoring. Although audio data is straightforward to gather, automated analysis remains a challenging task; the existing expertise, local knowledge and motivation of the birder community can complement computational approaches and provide distinct benefits. We explored both the culture and practice of birders, and paradigms for interacting with recorded audio data. A variety of candidate design elements were tested with birders. This study contributes an understanding of how virtual interactions and practices can be developed to complement existing practices of experienced birders in the physical world. In so doing this study contributes a new approach to engagement in e-science. Whereas most citizen science projects task lay participants with discrete real world or artificial activities, sometimes using extrinsic motivators, this approach builds on existing intrinsically satisfying practices.
Resumo:
Natural landscapes are increasingly subjected to anthropogenic pressure and fragmentation resulting in reduced ecological condition. In this study we examined the relationship between ecological condition and the soundscape in fragmented forest remnants of south-east Queensland, Australia. The region is noted for its high biodiversity value and increased pressure associated with habitat fragmentation and urbanisation. Ten sites defined by a distinct open eucalypt forest community dominated by spotted gum (Corymbia citriodora ssp. variegata) were stratified based on patch size and patch connectivity. Each site underwent a series of detailed vegetation condition and landscape assessments, together with bird surveys and acoustic analysis using relative soundscape power. Univariate and multivariate analyses indicated that the measurement of relative soundscape power reflects ecological condition and bird species richness, and is dependent on the extent of landscape fragmentation. We conclude that acoustic monitoring technologies provide a cost effective tool for measuring ecological condition, especially in conjunction with established field observations and recordings.
Resumo:
The process of structural health monitoring (SHM) involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures and acoustic emission (AE) is one technique that is finding an increasing use. Acoustic emission waves are the stress waves generated by the mechanical deformation of materials. AE waves produced inside a structure can be recorded by means of sensors attached on the surface. Analysis of these recorded signals can locate and assess the extent of damage. This paper describes preliminary studies on the application of AE technique for health monitoring of bridge structures. Crack initiation or structural damage will result in wave propagation in solid and this can take place in various forms. Propagation of these waves is likely to be affected by the dimensions, surface properties and shape of the specimen. This, in turn, will affect source localization. Various laboratory test results will be presented on source localization, using pencil lead break tests. The results from the tests can be expected to aid in enhancement of knowledge of acoustic emission process and development of effective bridge structure diagnostics system.
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.
Resumo:
Bridges are an important part of society's infrastructure and reliable methods are necessary to monitor them and ensure their safety and efficiency. Bridges deteriorate with age and early detection of damage helps in prolonging the lives and prevent catastrophic failures. Most bridges still in used today were built decades ago and are now subjected to changes in load patterns, which can cause localized distress and if not corrected can result in bridge failure. In the past, monitoring of structures was usually done by means of visual inspection and tapping of the structures using a small hammer. Recent advancements of sensors and information technologies have resulted in new ways of monitoring the performance of structures. This paper briefly describes the current technologies used in bridge structures condition monitoring with its prime focus in the application of acoustic emission (AE) technology in the monitoring of bridge structures and its challenges.
Resumo:
Acoustic emission (AE) technique is one of the popular diagnostic techniques used for structural health monitoring of mechanical, aerospace and civil structures. But several challenges still exist in successful application of AE technique. This paper explores various tools for analysis of recorded AE data to address two primary challenges: discriminating spurious signals from genuine signals and devising ways to quantify damage levels.
Resumo:
Managing the sustainability of urban infrastructure requires regular health monitoring of key infrastructure such as bridges. The process of structural health monitoring involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors, and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures, and acoustic emission is one technique that is finding an increasing use in the monitoring of civil infrastructures such as bridges. Acoustic emission technique is based on the recording of stress waves generated by rapid release of energy inside a material, followed by analysis of recorded signals to locate and identify the source of emission and assess its severity. This chapter first provides a brief background of the acoustic emission technique and the process of source localization. Results from laboratory experiments conducted to explore several aspects of the source localization process are also presented. The findings from the study can be expected to enhance knowledge of the acoustic emission process, and to aid the development of effective bridge structure diagnostics systems.