43 resultados para Wild flower gardening.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The vegetative phenotype of the pea mutant unifoliata (uni) is a simplification of the wild-type compound leaf to a single leaflet. Mutant uni plants are also self-sterile and the flowers resemble known floral meristem and organ identity mutants. In Antirrhinum and Arabidopsis, mutations in the floral meristem identity gene FLORICAULA/LEAFY (FLO/LFY) affect flower development alone, whereas the tobacco FLO/LFY homologue, NFL, is expressed in vegetative tissues, suggesting that NFL specifies determinacy in the progenitor cells for both flowers and leaves. In this paper, we characterised the pea homologue of FLO/LFY. Results The pea cDNA homologue of FLO/LFY, PEAFLO, mapped to the uni locus in recombinant-inbred mapping populations and markers based on PEAFLO cosegregated with uni in segregating sibling populations. The characterisation of two spontaneous uni mutant alleles, one containing a deletion and the other a point mutation in the PEAFLO coding sequences, predicted that PEAFLO corresponds to UNI and that the mutant vegetative phenotype was conferred by the defective PEAFLO gene. Conclusions The uni mutant demonstrates that there are shared regulatory processes in the morphogenesis of leaves and flowers and that floral meristem identity genes have an extended role in plant development. Pleiotropic regulatory genes such as UNI support the hypothesis that leaves and flowers derive from a common ancestral sporophyll-like structure. The regulation of indeterminacy during leaf and flower morphogenesis by UNI may reflect a primitive function for the gene in the pre-angiosperm era.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The notion of designing with change constitutes a fundamental and foundational theoretical premise for much of what constitutes landscape architecture, notably through engagement with ecology, particularly since the work of Ian McHarg in the 1960s and his key text Design with Nature. However, while most if not all texts in landscape architecture would cite this engagement of change theoretically, few go any further than citation, and when they do their methods seem fixated on utilising empirical, quantitative scientific tools for doing so, rather than the tools of design, in an architectural sense, as implied by the name of the discipline, landscape architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mud crab (Scylla spp.) aquaculture industry has expanded rapidly in recent years in many countries in the Indo - West Pacific (IWP) region as an alternative to marine shrimp culture because of significant disease outbreaks and associated failures of many shrimp culture industries in the region. Currently, practices used to produce and manage breeding crabs in hatcheries may compromise levels of genetic diversity, ultimately compromising growth rates, disease resistance and stock productivity. Therefore, to avoid “genetic pollution” and its harmful effects and to promote further development of mud crab aquaculture and fisheries in a sustainable way, a greater understanding of the genetic attributes of wild and cultured mud crab stocks is required. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations for multiple purposes including for commercial production, recreation and conservation and to increase profitability and sustainability of newly emerging crab culture industries. Phylogeographic patterns and the genetic structure of Asian mud crab populations across the IWP were assessed to determine if they were concordant with those of other widespread taxa possessing pelagic larvae of relatively long duration. A 597 bp fragment of the mitochondrial DNA COI gene was amplified and screened for variation in a total of 297 individuals of S. paramamosain from six sampling sites across the species’ natural geographical distribution in the IWP and 36 unique haplotypes were identified. Haplotype diversities per site ranged from 0.516 to 0.879. Nucleotide diversity estimates among haplotypes were 0.11% – 0.48%. Maximum divergence observed among S. paramamosain samples was 1.533% and samples formed essentially a single monophyletic group as no obvious clades were related to geographical location of sites. A weak positive relationship was observed however, between genetic distance and geographical distance among sites. Microsatellite markers were then used to assess contemporary gene flow and population structure in Asian mud crab populations sampled across their natural distribution in the IWP. Eight microsatellite loci were screened in sampled S. paramamosain populations and all showed high allelic diversity at all loci in sampled populations. In total, 344 individuals were analysed, and 304 microsatellite alleles were found across the 8 loci. The mean number of alleles per locus at each site ranged from 20.75 to 28.25. Mean allelic richness per site varied from 17.2 to 18.9. All sites showed high levels of heterozygosity as average expected heterozygosities for all loci ranged from 0.917 – 0.953 while mean observed heterozygosity ranged from 0.916 – 0.959. Allele diversities were similar at all sites and across all loci. The results did not show any evidence for major differences in allele frequencies among sites and patterns of allele frequencies were very similar in all populations across all loci. Estimates of population differentiation (FST) were relatively low and most probably largely reflect intra – individual variation for very highly variable loci. Results from nDNA analysis showed evidence for only very limited population genetic structure among sampled S. paramamosain, and a positive and significant association for genetic and geographical distance among sample sites. Microsatellite markers were then employed to determine if adequate levels of genetic diversity has been captured in crab hatcheries for the breeding cycle. The results showed that all microsatellite loci were polymorphic in hatchery samples. Culture populations were in general, highly genetically depauperate, compared with comparable wild populations, with only 3 to 8 alleles recorded for the same loci set per population. In contrast, very high numbers of alleles per locus were found in reference wild S. paramamosain populations, which ranged from 18 to 46 alleles per locus per population. In general, this translates into a 3 to 10 fold decline in mean allelic richness per locus in all culture stocks compared with wild reference counterparts. Furthermore, most loci in all cultured S. paramamosain samples showed departures from HWE equilibrium. Allele frequencies were very different in culture samples from that present in comparable wild reference samples and this in particular, was reflected in a large decline in allele diversity per locus. The pattern observed was best explained by significant impacts of breeding practices employed in hatcheries rather than natural differentiation among wild populations used as the source of brood stock. Recognition of current problems and management strategies for the species both for the medium and long-term development of the new culture industry are discussed. The priority research to be undertaken over the medium term for S. paramamosain should be to close the life cycle fully to allow individuals to be bred on demand and their offspring equalised to control broodstock reproductive contributions. Establishing a broodstock register and pedigree mating system will be required before any selection program is implemented. This will ensure that sufficient genetic variation will be available to allow genetic gains to be sustainably achieved in a future stock improvement program. A fundamental starting point to improve hatchery practices will be to encourage farmers and hatchery managers to spawn more females in their hatcheries as it will increase background genetic diversity in culture stocks. Combining crablet cohorts from multiple hatcheries into a single cohort for supply to farmers or rotation of breeding females regularly in hatcheries will help to address immediate genetic diversity problems in culture stocks. Application of these results can provide benefits for managing wild and cultured Asian mud crab populations more efficiently. Over the long-term, application of data on genetic diversity in wild and cultured stocks of Asian mud crab will contribute to development of sustainable and productive culture industries in Vietnam and other countries in the IWP and can contribute towards conservation of wild genetic resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract During a survey of faba bean viruses in West Asia and North Africa a virus was identified as broad bean stain virus (BBSV) based on host reactions, electron microscopy, physical properties and serology. An antiserum to a Syrian isolate was prepared. With this antiserum both the direct double antibody sandwich ELISA (DAS-ELISA) and dot-ELISA were very sensitive in detecting BBSV in leaf extracts, ground whole seeds and germi nated embryos. Sens it i vity was not reduced when the two-day procedure was replaced by a one-day procedure. us i ng ELISA the vi rus was detected in 73 out of 589 faba bean samples with virus-like symptoms collected from Egypt (4 out of 70 samples tested), Lebanon (6/44) , Morocco (017), Sudan (19/254), Syria (36/145) and Tunisia (8/69). This is the first report of BBSV infection of faba bean in Lebanon, Sudan, Syria and Tunisia. speci es i ndi genous to Syri a were Fourteen wild legume susceptible to BBSV infection, with only two producing obvious symptoms. The virus was found to be seed transmitted ~n Vicia palaestina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Seed-transmissibility of brood bean stain virus (BBSV) was investigated in a number of wild legume species. Genninating axes of seeds coliected from BBSV -infected plants were tested by the enzyme-linked immunosorbent assay (ELISA). The virus was found to be seedtransmitted in Vida pal«stina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coral reefs around the world may be likened to canaries down the mineshaft of global warming. These sensitive plant-like animals have evolved for life in tropical seas. Their needs are quite specific – not too cold, not too hot. A rise of as little as one degree Celsius is enough to cause some bleaching of these colourful jewels of the sea. Many climate models indicate we can expect sea temperature increases of between two and six degrees Celsius. Research - such as that detailed in a 2004 report by the University of Queensland’s Centre for Marine Studies – indicates that by the year 2050 most of the worlds major reef systems will be dead. Many of us have heard this kind of information, but it remains difficult to comprehend. It’s almost impossible to imagine the death of the Great Barrier Reef. Some six to nine thousand years old and visible from space, it is the world’s largest structure created by living organisms. Yet whilst it is hard to believe, this gentle, sensitive giant is at grave risk because it cannot adapt quickly enough to the changes in the environment. This cluster of fluffy felt brain coral sculptures are connected in real time to temperature data collected by monitoring stations within the Great Barrier Reef, that form part of the Australian Institute of Marine Science’s Great Barrier Reed Ocean Observing System. These corals display illumination patterns showing changes in sea temperature at Heron Reef, one of the 2,900 reefs that comprise the Great Barrier Reef. Their spectrum of colour ranges from cool hues, through warm tones to bright white when temperatures exceed those that tropical corals are able to tolerate over sustained periods. The Flower Animals also blush in colour and make sound when people come within close proximity. In a reef, fishes and other creatures generate significant amounts of sound. These cacophonies are considered an indicator of reef health, and are used by reef fish to determine where they can best live and forage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heavy rain falls that we have been experiencing have had their impact on the public transport system, especially the ferries. September 2010 was the Brisbane area’s wettest on record, and early to mid October has shaped up much the same. So much so that the South East Queensland’s main water storages, the Wivenhoe and Somerset Dams, which are fed by the Stanley and Brisbane Rivers’ upper catchments, have filled to capacity. SEQ Water consequently released the floodgates on the Wivenhoe Dam for the first time in almost a decade, with bipartisan support of State and Local Governments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creative non-fiction published by Voiceworks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PCR-based cancer diagnosis requires detection of rare mutations in k- ras, p53 or other genes. The assumption has been that mutant and wild-type sequences amplify with near equal efficiency, so that they are eventually present in proportions representative of the starting material. Work on factor IX suggests that this assumption is invalid for one case of near- sequence identity. To test the generality of this phenomenon and its relevance to cancer diagnosis, primers distant from point mutations in p53 and k-ras were used to amplify wild-type and mutant sequences from these genes. A substantial bias against PCR amplification of mutants was observed for two regions of the p53 gene and one region of k-ras. For k-ras and p53, bias was observed when the wild-type and mutant sequences were amplified separately or when mixed in equal proportions before PCR. Bias was present with proofreading and non-proofreading polymerase. Mutant and wild-type segments of the factor V, cystic fibrosis transmembrane conductance regulator and prothrombin genes were amplified and did not exhibit PCR bias. Therefore, the assumption of equal PCR efficiency for point mutant and wild-type sequences is invalid in several systems. Quantitative or diagnostic PCR will require validation for each locus, and enrichment strategies may be needed to optimize detection of mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light plays a unique role for plants as it is both a source of energy for growth and a signal for development. Light captured by the pigments in the light harvesting complexes is used to drive the synthesis of the chemical energy required for carbon assimilation. The light perceived by photoreceptors activates effectors, such as transcription factors (TFs), which modulate the expression of light-responsive genes. Recently, it has been speculated that increasing the photosynthetic rate could further improve the yield potential of three carbon (C3) crops such as wheat. However, little is currently known about the transcriptional regulation of photosynthesis genes, particularly in crop species. Nuclear factor Y (NF-Y) TF is a functionally diverse regulator of growth and development in the model plant species, with demonstrated roles in embryo development, stress response, flowering time and chloroplast biogenesis. Furthermore, a light-responsive NF-Y binding site (CCAAT-box) is present in the promoter of a spinach photosynthesis gene. As photosynthesis genes are co-regulated by light and co-regulated genes typically have similar regulatory elements in their promoters, it seems likely that other photosynthesis genes would also have light-responsive CCAAT-boxes. This provided the impetus to investigate the NF-Y TF in bread wheat. This thesis is focussed on wheat NF-Y members that have roles in light-mediated gene regulation with an emphasis on their involvement in the regulation of photosynthesis genes. NF-Y is a heterotrimeric complex, comprised of the three subunits NF-YA, NF-YB and NF-YC. Unlike the mammalian and yeast counterparts, each of the three subunits is encoded by multiple genes in Arabidopsis. The initial step taken in this study was the identification of the wheat NF-Y family (Chapter 3). A search of the current wheat nucleotide sequence databases identified 37 NF-Y genes (10 NF-YA, 11 NF-YB, 14 NF-YC & 2 Dr1). Phylogenetic analysis revealed that each of the three wheat NF-Y (TaNF-Y) subunit families could be divided into 4-5 clades based on their conserved core regions. Outside of the core regions, eleven motifs were identified to be conserved between Arabidopsis, rice and wheat NF-Y subunit members. The expression profiles of TaNF-Y genes were constructed using quantitative real-time polymerase chain reaction (RT-PCR). Some TaNF-Y subunit members had little variation in their transcript levels among the organs, while others displayed organ-predominant expression profiles, including those expressed mainly in the photosynthetic organs. To investigate their potential role in light-mediated gene regulation, the light responsiveness of the TaNF-Y genes were examined (Chapters 4 and 5). Two TaNF-YB and five TaNF-YC members were markedly upregulated by light in both the wheat leaves and seedling shoots. To identify the potential target genes of the light-upregulated NF-Y subunit members, a gene expression correlation analysis was conducted using publically available Affymetrix Wheat Genome Array datasets. This analysis revealed that the transcript expression levels of TaNF-YB3 and TaNF-YC11 were significantly correlated with those of photosynthesis genes. These correlated express profiles were also observed in the quantitative RT-PCR dataset from wheat plants grown under light and dark conditions. Sequence analysis of the promoters of these wheat photosynthesis genes revealed that they were enriched with potential NF-Y binding sites (CCAAT-box). The potential role of TaNF-YB3 in the regulation of photosynthetic genes was further investigated using a transgenic approach (Chapter 5). Transgenic wheat lines constitutively expressing TaNF-YB3 were found to have significantly increased expression levels of photosynthesis genes, including those encoding light harvesting chlorophyll a/b-binding proteins, photosystem I reaction centre subunits, a chloroplast ATP synthase subunit and glutamyl-tRNA reductase (GluTR). GluTR is a rate-limiting enzyme in the chlorophyll biosynthesis pathway. In association with the increased expression of the photosynthesis genes, the transgenic lines had a higher leaf chlorophyll content, increased photosynthetic rate and had a more rapid early growth rate compared to the wild-type wheat. In addition to its role in the regulation of photosynthesis genes, TaNF-YB3 overexpression lines flower on average 2-days earlier than the wild-type (Chapter 6). Quantitative RT-PCR analysis showed that there was a 13-fold increase in the expression level of the floral integrator, TaFT. The transcript levels of other downstream genes (TaFT2 and TaVRN1) were also increased in the transgenic lines. Furthermore, the transcript levels of TaNF-YB3 were significantly correlated with those of constans (CO), constans-like (COL) and timing of chlorophyll a/b-binding (CAB) expression 1 [TOC1; (CCT)] domain-containing proteins known to be involved in the regulation of flowering time. To summarise the key findings of this study, 37 NF-Y genes were identified in the crop species wheat. An in depth analysis of TaNF-Y gene expression profiles revealed that the potential role of some light-upregulated members was in the regulation of photosynthetic genes. The involvement of TaNF-YB3 in the regulation of photosynthesis genes was supported by data obtained from transgenic wheat lines with increased constitutive expression of TaNF-YB3. The overexpression of TaNF-YB3 in the transgenic lines revealed this NF-YB member is also involved in the fine-tuning of flowering time. These data suggest that the NF-Y TF plays an important role in light-mediated gene regulation in wheat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing resistance of rabbits to myxomatosis in Australia has led to the exploration of Rabbit Haemorrhagic Disease, also called Rabbit Calicivirus Disease (RCD) as a possible control agent. While the initial spread of RCD in Australia resulted in widespread rabbit mortality in affected areas, the possible population dynamic effects of RCD and myxomatosis operating within the same system have not been properly explored. Here we present early mathematical modelling examining the interaction between the two diseases. In this study we use a deterministic compartment model, based on the classical SIR model in infectious disease modelling. We consider, here, only a single strain of myxomatosis and RCD and neglect latent periods. We also include logistic population growth, with the inclusion of seasonal birth rates. We assume there is no cross-immunity due to either disease. The mathematical model allows for the possibility of both diseases to be simultaneously present in an individual, although results are also presented for the case where co infection is not possible, since co-infection is thought to be rare and questions exist as to whether it can occur. The simulation results of this investigation show that it is a crucial issue and should be part of future field studies. A single simultaneous outbreak of RCD and myxomatosis was simulated, while ignoring natural births and deaths, appropriate for a short timescale of 20 days. Simultaneous outbreaks may be more common in Queensland. For the case where co-infection is not possible we find that the simultaneous presence of myxomatosis in the population suppresses the prevalence of RCD, compared to an outbreak of RCD with no outbreak of myxomatosis, and thus leads to a less effective control of the population. The reason for this is that infection with myxomatosis removes potentially susceptible rabbits from the possibility of infection with RCD (like a vaccination effect). We found that the reduction in the maximum prevalence of RCD was approximately 30% for an initial prevalence of 20% of myxomatosis, for the case where there was no simultaneous outbreak of myxomatosis, but the peak prevalence was only 15% when there was a simultaneous outbreak of myxomatosis. However, this maximum reduction will depend on other parameter values chosen. When co-infection is allowed then this suppression effect does occur but to a lesser degree. This is because the rabbits infected with both diseases reduces the prevalence of myxomatosis. We also simulated multiple outbreaks over a longer timescale of 10 years, including natural population growth rates, with seasonal birth rates and density dependent(logistic) death rates. This shows how both diseases interact with each other and with population growth. Here we obtain sustained outbreaks occurring approximately every two years for the case of a simultaneous outbreak of both diseases but without simultaneous co-infection, with the prevalence varying from 0.1 to 0.5. Without myxomatosis present then the simulation predicts RCD dies out quickly without further introduction from elsewhere. With the possibility of simultaneous co-infection of rabbits, sustained outbreaks are possible but then the outbreaks are less severe and more frequent (approximately yearly). While further model development is needed, our work to date suggests that: 1) the diseases are likely to interact via their impacts on rabbit abundance levels, and 2) introduction of RCD can suppress myxomatosis prevalence. We recommend that further modelling in conjunction with field studies be carried out to further investigate how these two diseases interact in the population.