23 resultados para Water ethanol 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) is considered to be an inert solvent of cellulose and lignocellulosic biomass. Acetylation (1.7 % mol, or DS 0.017) of cellulose after dissolution in [C2mim]OAc (150 °C for 20 min), is demonstrated by compositional analysis, FTIR analysis and 13C NMR spectroscopy (in [C2min]OAc with 13C enriched acetate). This acetylation, in the absence of added acylating agents, has not been reported before and may limit [C2mim]OAc utility in industrial scale biomass processing, even at this low extent. For example, cellulose acetylation may contribute to IL loss in processes where the IL is recovered and reused and inhibit enzyme saccharification of cellulose in lignocellulosic biofuel production processes based on saccharification and fermentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrodeposition of silver from two ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) and N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ([C4mPyr][TFSI]), and an aqueous KNO3 solution on a glassy carbon electrode was undertaken. It was found by cyclic voltammetry that the electrodeposition of silver proceeds through nucleationâgrowth kinetics. Analysis of chronoamperometric data indicated that the nucleationâgrowth mechanism is instantaneous at all potentials in the case of [BMIm][BF4] and [C4mPyr][TFSI], and instantaneous at low overpotentials tending to progressive at high overpotentials for KNO3. Significantly, under ambient conditions, the silver electrodeposition mechanism changes to progressive nucleation and growth in [C4mPyr][TFSI], which is attributed to the uptake of atmospheric water in the IL. It was found that these differences in the growth mechanism impact significantly on the morphology of the resultant electrodeposit which is characterised ex situ by scanning electron microscopy and X-ray diffraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pretretament is an essential and expensive processing step for the manufacturing of ethanol from lignocellulosic raw materials. Ionic liquids are a new class of solvents that have the potential to be used as pretreatment agents. The attractive characteristics of ionic liquid pretreatment of lignocellulosics such as thermal stability, dissolution properties, fractionation potential, cellulose decrystallisation capacity and saccharification impact are investigated in this thesis. Dissolution of bagasse with 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) at high temperatures (110 �â¹C to 160 �â¹C) is investigated as a pretreatment process. Material balances are reported and used along with enzymatic saccharification data to identify optimum pretreatment conditions (150 �â¹C for 90 min). At these conditions, the dissolved and reprecipitated material is enriched in cellulose, has a low crystallinity and the cellulose component is efficiently hydrolysed (93 %, 3 h, 15 FPU). At pretreatment temperatures < 150 �â¹C, the undissolved material has only slightly lower crystallinity than the starting. At pretreatment temperatures . 150 �â¹C, the undissolved material has low crystallinity and when combined with the dissolved material has a saccharification rate and extent similar to completely dissolved material (100 %, 3h, 15 FPU). Complete dissolution is not necessary to maximize saccharification efficiency at temperatures . 150 �â¹C. Fermentation of [C4mim]Cl-pretreated, enzyme-saccharified bagasse to ethanol is successfully conducted (85 % molar glucose-to-ethanol conversion efficiency). As compared to standard dilute acid pretreatment, the optimised [C4mim]Cl pretreatment achieves substantially higher ethanol yields (79 % cf. 52 %) in less than half the processing time (pretreatment, saccharification, fermentation). Fractionation of bagasse partially dissolved in [C4mim]Cl to a polysaccharide rich and a lignin rich fraction is attempted using aqueous biphasic systems (ABSs) and single phase systems with preferential precipitation. ABSs of ILs and concentrated aqueous inorganic salt solutions are achievable (e.g. [C4mim]Cl with 200 g L-1 NaOH), albeit they exhibit a number of technical problems including phase convergence (which increases with increasing biomass loading) and deprotonation of imidazolium ILs (5 % - 8 % mol). Single phase fractionation systems comprising lignin solvents / cellulose antisolvents, viz. NaOH (2M) and acetone in water (1:1, volume basis), afford solids with, respectively, 40 % mass and 29 % mass less lignin than water precipitated solids. However, this delignification imparts little increase in saccharification rates and extents of these solids. An alternative single phase fractionation system is achieved simply by using water as an antisolvent. Regulating the water : IL ratio results in a solution that precipitates cellulose and maintains lignin in solution (0.5 water : IL mass ratio) in both [C4mim]Cl and 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc)). This water based fractionation is applied in three IL pretreatments on bagasse ([C4mim]Cl, 1-ethyl-3-methyl imidazolium chloride ([C2mim]Cl) and [C2mim]OAc). Lignin removal of 10 %, 50 % and 60 % mass respectively is achieved although only 0.3 %, 1.5 % and 11.7 % is recoverable even after ample water addition (3.5 water : IL mass ratio) and acidification (pH . 1). In addition the recovered lignin fraction contains 70 % mass hemicelluloses. The delignified, cellulose-rich bagasse recovered from these three ILs is exposed to enzyme saccharification. The saccharification (24 h, 15 FPU) of the cellulose mass in starting bagasse, achieved by these pretreatments rank as: [C2mim]OAc (83 %)>>[C2mim]Cl (53 %)=[C4mim]Cl(53%). Mass balance determinations accounted for 97 % of starting bagasse mass for the [C4mim]Cl pretreatment , 81 % for [C2mim]Cl and 79 %for [C2mim]OAc. For all three IL treatments, the remaining bagasse mass (not accounted for by mass balance determinations) is mainly (more than half) lignin that is not recoverable from the liquid fraction. After pretreatment, 100 % mass of both ions of all three ILs were recovered in the liquid fraction. Compositional characteristics of [C2mim]OAc treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are opposite to those of chloride IL treated solids. The former biomass characteristics resemble those imparted by aqueous alkali pretreatment while the latter resemble those of aqueous acid pretreatments. The 100 % mass recovery of cellulose in [C2mim]OAc as opposed to 53 % mass recovery in [C2mim]Cl further demonstrates this since the cellulose glycosidic bonds are protected under alkali conditions. The alkyl chain length decrease in the imidazolium cation of these ILs imparts higher rates of dissolution and losses, and increases the severity of the treatment without changing the chemistry involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A biomass pretreatment process was developed using acidified ionic liquid (IL) solutions containing 10-30% water. Pretreatment of sugarcane bagasse at 130°C for 30min by aqueous 1-butyl-3-methylimidazolium chloride (BMIMCl) solution containing 1.2% HCl resulted in a glucan digestibility of 94-100% after 72h of enzymatic hydrolysis. HCl was found to be a more effective catalyst than H(2)SO(4) or FeCl(3). Increasing acid concentration (from 0.4% to 1.2%) and reaction temperature (from 90 to 130°C) increased glucan digestibility. The glucan digestibility of solid residue obtained with the acidified BMIMCl solution that was re-used for three times was >97%. The addition of water to ILs for pretreatment could significantly reduce IL solvent costs and allow for increased biomass loadings, making the pretreatment by ILs a more economic proposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pretreatments of sugarcane bagasse for saccharification using different acid-catalysed imidazolium IL solutions (containing 20% water) at 130 °C for 30 min were investigated. At the same solution pH, pretreatment effectiveness in terms of glucan digestibility, delignification and xylan removal were similar for aqueous 1-butyl-3-methylimidazolium methane sulfonate (BMIMCH3SO3), 1-butyl-3-methylimidazolium methyl sulfate (BMIMCH3SO4), 1-ethyl-3-methylimidazolium chloride (EMIMCl) and 1-butyl-3-methylimidazolium chloride (BMIMCl). Decreasing solution pH of aqueous IL systems from 6.0 to 0.4 increased bagasse delignification and xylan removal, and as a result, improved glucan digestibility. The glucan digestibilities for bagasse samples pretreated by IL solutions with pH ⤠0.9 were > 90% after 72 h of enzymatic hydrolysis. Without pH adjustment, the effectiveness of these aqueous IL solutions (except BMIMCH3SO3 because of its low natural pH of 0.9) to deconstruct the biomass was poor and the glucan digestibilities of pretreated bagasse samples were < 20%. These results show that pretreatment effectiveness of aqueous imidazolium ILs can simply be estimated from solution pH rather than hydrogen bond basicity (β) of the IL solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The expression of biomass-degrading enzymes (such as cellobiohydrolases) in transgenic plants has the potential to reduce the costs of biomass saccharification by providing a source of enzymes to supplement commercial cellulase mixtures. Cellobiohydrolases are the main enzymes in commercial cellulase mixtures. In the present study, a cellobiohydrolase was expressed in transgenic corn stover leaf and assessed as an additive for two commercial cellulase mixtures for the saccharification of pretreated sugar cane bagasse obtained by different processes. Results Recombinant cellobiohydrolase in the senescent leaves of transgenic corn was extracted using a simple buffer with no concentration step. The extract significantly enhanced the performance of Celluclast 1.5 L (a commercial cellulase mixture) by up to fourfold on sugar cane bagasse pretreated at the pilot scale using a dilute sulfuric acid steam explosion process compared to the commercial cellulase mixture on its own. Also, the extracts were able to enhance the performance of Cellic CTec2 (a commercial cellulase mixture) up to fourfold on a range of residues from sugar cane bagasse pretreated at the laboratory (using acidified ethylene carbonate/ethylene glycol, 1-butyl-3-methylimidazolium chloride, and ball-milling) and pilot (dilute sodium hydroxide and glycerol/hydrochloric acid steam explosion) scales. We have demonstrated using tap water as a solvent (under conditions that mimic an industrial process) extraction of about 90% recombinant cellobiohydrolase from senescent, transgenic corn stover leaf that had minimal tissue disruption. Conclusions The accumulation of recombinant cellobiohydrolase in senescent, transgenic corn stover leaf is a viable strategy to reduce the saccharification cost associated with the production of fermentable sugars from pretreated biomass. We envisage an industrial-scale process in which transgenic plants provide both fibre and biomass-degrading enzymes for pretreatment and enzymatic hydrolysis, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate an unusual shape transformation of Ag nanospheres into {111}-oriented AuâAg dendritic nanostructures by a galvanic replacement reaction in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sugarcane bagasse pretreatment processes using acidified aqueous ethylene glycol (EG) and ionic liquids (ILs) have been reported recently. In this study, recovery of lignins from these processes was conducted, as well as determination of their physico-chemical properties. The amount of lignins recovered from 1-butyl-3-methylimidazolium chloride ([bmim]Cl) with HCl as a catalyst and [bmim][CH3SO3] was ∼42%, and ∼35%â36% by EG with HCl or H2SO4 as a catalyst, respectively. The isolated lignins were characterised using wet chemistry, spectroscopy and thermogravimetry analysis (TGA), and the results compared to soda lignin from NaOH pretreatment of bagasse. The IL and EG lignins contained no or trace amounts of carbohydrates, slightly lower hydrogen content but slightly higher oxygen contents than soda lignin. The IL and EG lignins contained more C-3 and C-5 reactive sites for Mannich reaction and had more p-hydroxypheny propane unit structures than soda lignin. Two-dimensional heteronuclear single quantum coherence (2D HSQC) nuclear magnetic resonance (NMR) identified the major substructural units in the lignins, and allowed differences among them to be studied. As EG lignins were extracted in very reactive environment, intermediate enol ethers were formed and led to cleavage reactions which were not apparent in the other lignins. 31P NMR and infra-red spectroscopy results showed that IL and EG lignins had lower total hydroxyl content than soda lignin, probably indicating that a higher degree of self-polymerisation occurred during bagasse pretreatment, despite the use of lower temperature and shorter reaction time. On the basis of the salient features of these lignins, potential applications were proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the electropolymerization of poly(3,4-ethylenedioxythiopene) (PEDOT) from an ionic liquid, butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (C4mpyrTFSI) onto flexible carbon cloth electrodes. A continuous, homogeneous and well adhered coating of the individual cloth fibres is achieved by employing a sandwich cell arrangement where the carbon cloth which is soaked with electrolyte is placed between two indium tin oxide electrodes isolated from each other by a battery separator. The resultant PEDOT modified carbon cloth electrode demonstrates excellent activity for the oxygen reduction reaction which is due to the doping level, conductivity and morphology of the PEDOT layer and is also tolerant to the presence of methanol in the electrolyte. This simple approach therefore offers a route to fabricate flexible polymer electrodes that could be used in various electronic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stimulated by the efficacy of copper (I) catalysed Huisgen-type 1,3-dipolar cycloaddition of terminal alkynes and organic azides to generate 1,4-disubstituted 1,2,3-triazole derivatives, the importance of â˜clickâ chemistry in the synthesis of organic and biological molecular systems is ever increasing.[1] The mild reaction conditions have also led to this reaction gaining favour in the construction of interlocked molecular architectures.[2-4] In the majority of cases however, the triazole group simply serves as a covalent linkage with no function in the resulting organic molecular framework. More recently a renewed interest has been shown in the transition metal coordination chemistry of triazole ligands.[3, 5, 6] In addition novel aryl macrocyclic and acyclic triazole based oligomers have been shown to recognise halide anions via cooperative triazole C5-Hâ¦.anion hydrogen bonds.[7] In light of this it is surprising the potential anion binding affinity of the positively charged triazolium motif has not, with one notable exception,[8] been investigated. With the objective of manipulating the unique topological cavities of mechanically bonded molecules for anion recognition purposes, we have developed general methods of using anions to template the formation of interpenetrated and interlocked structures.[9-13] Herein we report the first examples of exploiting the 1,2,3-triazolium group in the anion templated formation of pseudorotaxane and rotaxane assemblies. In an unprecedented discovery the bromide anion is shown to be a superior templating reagent to chloride in the synthesis of a novel triazolium axle containing [2]rotaxane. Furthermore the resulting rotaxane interlocked host system exhibits the rare selectivity preference for bromide over chloride...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the structure of the title compound C14H9Cl3I2, which is the p-iodophenyl analogue of the insecticide DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane], isomorphism between the two compounds has been confirmed. In the molecule the dihedral angle between the planes of the two phenyl rings is 65.8(4)deg. which compares with 64.7(7)deg. in DDT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the title compound, C18H19Cl3O2, which is the 4-ethoxyphenyl analogue of the insecticidally active 4-methoxyphenyl compound methoxychlor, the dihedral angle between the two benzene rings is 60.38(13)deg. An intramolecular aromatic C-H...Cl interaction is present.