171 resultados para Vector representation
Resumo:
The idea of collective unintelligence is examined in this paper to highlight some of the conceptual and practical problems faced in modeling groups. Examples drawn from international crises and economics provide illustrative problems of collective failures to act in intelligent ways, despite the inputs and efforts of many skilled and intelligent parties. Choices made of “appropriate” perceptions, analysis and evaluations are examined along with how these might be combined. A simple vector representation illustrates some of the issues and creative possibilities in multi-party actions. Revealed as manifest (un-)intelligence are the resolutions of various problems and potentials that arise in dealing with the “each and all” of a group (wherein items are necessarily non-parallel and of unequal valency). Such issues challenge those seeking to model collective intelligence, but much may be learned.
Resumo:
The aim of this paper is to provide a comparison of various algorithms and parameters to build reduced semantic spaces. The effect of dimension reduction, the stability of the representation and the effect of word order are examined in the context of the five algorithms bearing on semantic vectors: Random projection (RP), singular value decom- position (SVD), non-negative matrix factorization (NMF), permutations and holographic reduced representations (HRR). The quality of semantic representation was tested by means of synonym finding task using the TOEFL test on the TASA corpus. Dimension reduction was found to improve the quality of semantic representation but it is hard to find the optimal parameter settings. Even though dimension reduction by RP was found to be more generally applicable than SVD, the semantic vectors produced by RP are somewhat unstable. The effect of encoding word order into the semantic vector representation via HRR did not lead to any increase in scores over vectors constructed from word co-occurrence in context information. In this regard, very small context windows resulted in better semantic vectors for the TOEFL test.
Resumo:
This paper analyses the probabilistic linear discriminant analysis (PLDA) speaker verification approach with limited development data. This paper investigates the use of the median as the central tendency of a speaker’s i-vector representation, and the effectiveness of weighted discriminative techniques on the performance of state-of-the-art length-normalised Gaussian PLDA (GPLDA) speaker verification systems. The analysis within shows that the median (using a median fisher discriminator (MFD)) provides a better representation of a speaker when the number of representative i-vectors available during development is reduced, and that further, usage of the pair-wise weighting approach in weighted LDA and weighted MFD provides further improvement in limited development conditions. Best performance is obtained using a weighted MFD approach, which shows over 10% improvement in EER over the baseline GPLDA system on mismatched and interview-interview conditions.
Resumo:
Semantic Space models, which provide a numerical representation of words’ meaning extracted from corpus of documents, have been formalized in terms of Hermitian operators over real valued Hilbert spaces by Bruza et al. [1]. The collapse of a word into a particular meaning has been investigated applying the notion of quantum collapse of superpositional states [2]. While the semantic association between words in a Semantic Space can be computed by means of the Minkowski distance [3] or the cosine of the angle between the vector representation of each pair of words, a new procedure is needed in order to establish relations between two or more Semantic Spaces. We address the question: how can the distance between different Semantic Spaces be computed? By representing each Semantic Space as a subspace of a more general Hilbert space, the relationship between Semantic Spaces can be computed by means of the subspace distance. Such distance needs to take into account the difference in the dimensions between subspaces. The availability of a distance for comparing different Semantic Subspaces would enable to achieve a deeper understanding about the geometry of Semantic Spaces which would possibly translate into better effectiveness in Information Retrieval tasks.
Resumo:
Local spatio-temporal features with a Bag-of-visual words model is a popular approach used in human action recognition. Bag-of-features methods suffer from several challenges such as extracting appropriate appearance and motion features from videos, converting extracted features appropriate for classification and designing a suitable classification framework. In this paper we address the problem of efficiently representing the extracted features for classification to improve the overall performance. We introduce two generative supervised topic models, maximum entropy discrimination LDA (MedLDA) and class- specific simplex LDA (css-LDA), to encode the raw features suitable for discriminative SVM based classification. Unsupervised LDA models disconnect topic discovery from the classification task, hence yield poor results compared to the baseline Bag-of-words framework. On the other hand supervised LDA techniques learn the topic structure by considering the class labels and improve the recognition accuracy significantly. MedLDA maximizes likelihood and within class margins using max-margin techniques and yields a sparse highly discriminative topic structure; while in css-LDA separate class specific topics are learned instead of common set of topics across the entire dataset. In our representation first topics are learned and then each video is represented as a topic proportion vector, i.e. it can be comparable to a histogram of topics. Finally SVM classification is done on the learned topic proportion vector. We demonstrate the efficiency of the above two representation techniques through the experiments carried out in two popular datasets. Experimental results demonstrate significantly improved performance compared to the baseline Bag-of-features framework which uses kmeans to construct histogram of words from the feature vectors.