86 resultados para VLSI CAD
Resumo:
The indoor air quality (IAQ) in buildings is currently assessed by measurement of pollutants during building operation for comparison with air quality standards. Current practice at the design stage tries to minimise potential indoor air quality impacts of new building materials and contents by selecting low-emission materials. However low-emission materials are not always available, and even when used the aggregated pollutant concentrations from such materials are generally overlooked. This paper presents an innovative tool for estimating indoor air pollutant concentrations at the design stage, based on emissions over time from large area building materials, furniture and office equipment. The estimator considers volatile organic compounds, formaldehyde and airborne particles from indoor materials and office equipment and the contribution of outdoor urban air pollutants affected by urban location and ventilation system filtration. The estimated pollutants are for a single, fully mixed and ventilated zone in an office building with acceptable levels derived from Australian and international health-based standards. The model acquires its dimensional data for the indoor spaces from a 3D CAD model via IFC files and the emission data from a building products/contents emissions database. This paper describes the underlying approach to estimating indoor air quality and discusses the benefits of such an approach for designers and the occupants of buildings.
Resumo:
The application of computer-aided design and manufacturing (CAD/CAM) techniques in the clinic is growing slowly but steadily. The ability to build patient-specific models based on medical imaging data offers major potential. In this work we report on the feasibility of employing laser scanning with CAD/CAM techniques to aid in breast reconstruction. A patient was imaged with laser scanning, an economical and facile method for creating an accurate digital representation of the breasts and surrounding tissues. The obtained model was used to fabricate a customized mould that was employed as an intra-operative aid for the surgeon performing autologous tissue reconstruction of the breast removed due to cancer. Furthermore, a solid breast model was derived from the imaged data and digitally processed for the fabrication of customized scaffolds for breast tissue engineering. To this end, a novel generic algorithm for creating porosity within a solid model was developed, using a finite element model as intermediate.
Resumo:
Often CAD models already exist for parts of a geometry being simulated using GEANT4. Direct import of these CAD models into GEANT4 however,may not be possible and complex components may be diffcult to define via other means. Solutions that allow for users to work around the limited support in the GEANT4 toolkit for loading predefined CAD geometries have been presented by others, however these solutions require intermediate file format conversion using commercial software. Here within we describe a technique that allows for CAD models to be directly loaded as geometry without the need for commercial software and intermediate file format conversion. Robustness of the interface was tested using a set of CAD models of various complexity; for the models used in testing, no import errors were reported and all geometry was found to be navigable by GEANT4. Funding source: Cancer Australia (Department of Health and Ageing) Research Grant 614217
Resumo:
Currently there are ~3000 known species of Sarcophagidae (Diptera), which are classified into 173 genera in three subfamilies. Almost 25% of sarcophagids belong to the genus Sarcophaga (sensu lato) however little is known about the validity of, and relationships between the ~150 (or more) subgenera of Sarcophaga s.l. In this preliminary study, we evaluated the usefulness of three sources of data for resolving relationships between 35 species from 14 Sarcophaga s.l. subgenera: the mitochondrial COI barcode region, ~800. bp of the nuclear gene CAD, and 110 morphological characters. Bayesian, maximum likelihood (ML) and maximum parsimony (MP) analyses were performed on the combined dataset. Much of the tree was only supported by the Bayesian and ML analyses, with the MP tree poorly resolved. The genus Sarcophaga s.l. was resolved as monophyletic in both the Bayesian and ML analyses and strong support was obtained at the species-level. Notably, the only subgenus consistently resolved as monophyletic was Liopygia. The monophyly of and relationships between the remaining Sarcophaga s.l. subgenera sampled remain questionable. We suggest that future phylogenetic studies on the genus Sarcophaga s.l. use combined datasets for analyses. We also advocate the use of additional data and a range of inference strategies to assist with resolving relationships within Sarcophaga s.l.
Resumo:
The primary aim of this multidisciplinary project was to develop a new generation of breast implants. Disrupting the currently prevailing paradigm of silicone implants which permanently introduce a foreign body into mastectomy patients, highly porous implants developed as part of this PhD project are biodegradable by the body and augment the growth of natural tissue. Our technology platform leverages computer-assisted-design which allows us to manufacture fully patient-specific implants based on a personalised medicine approach. Multiple animal studies conducted in this project have shown that the polymeric implant slowly degrades within the body harmlessly while the body's own tissue forms concurrently.