129 resultados para Truncated Gini index
Resumo:
Age-related macular degeneration (AMD) affects the central vision and subsequently may lead to visual loss in people over 60 years of age. There is no permanent cure for AMD, but early detection and successive treatment may improve the visual acuity. AMD is mainly classified into dry and wet type; however, dry AMD is more common in aging population. AMD is characterized by drusen, yellow pigmentation, and neovascularization. These lesions are examined through visual inspection of retinal fundus images by ophthalmologists. It is laborious, time-consuming, and resource-intensive. Hence, in this study, we have proposed an automated AMD detection system using discrete wavelet transform (DWT) and feature ranking strategies. The first four-order statistical moments (mean, variance, skewness, and kurtosis), energy, entropy, and Gini index-based features are extracted from DWT coefficients. We have used five (t test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance, receiver operating characteristics curve-based, and Wilcoxon) feature ranking strategies to identify optimal feature set. A set of supervised classifiers namely support vector machine (SVM), decision tree, k -nearest neighbor ( k -NN), Naive Bayes, and probabilistic neural network were used to evaluate the highest performance measure using minimum number of features in classifying normal and dry AMD classes. The proposed framework obtained an average accuracy of 93.70 %, sensitivity of 91.11 %, and specificity of 96.30 % using KLD ranking and SVM classifier. We have also formulated an AMD Risk Index using selected features to classify the normal and dry AMD classes using one number. The proposed system can be used to assist the clinicians and also for mass AMD screening programs.
Resumo:
This paper seeks to explain the lagging productivity in Singapore’s manufacturing noted in the statements of the Economic Strategies Committee Report 2010. Two methods are employed: the Malmquist productivity to measure total factor productivity change and Simar and Wilson’s (J Econ, 136:31–64, 2007) bootstrapped truncated regression approach. In the first stage, the nonparametric data envelopment analysis is used to measure technical efficiency. To quantify the economic drivers underlying inefficiencies, the second stage employs a bootstrapped truncated regression whereby bias-corrected efficiency estimates are regressed against explanatory variables. The findings reveal that growth in total factor productivity was attributed to efficiency change with no technical progress. Most industries were technically inefficient throughout the period except for ‘Pharmaceutical Products’. Sources of efficiency were attributed to quality of worker and flexible work arrangements while incessant use of foreign workers lowered efficiency.
Resumo:
A measure quantifying unequal use of carbon sources, the Gini coefficient (G), has been developed to allow comparisons of the observed functional diversity of bacterial soil communities. This approach was applied to the analysis of substrate utilisation data obtained from using BIOLOG microtiter plates in a study which compared decomposition processes in two contrasting plant substrates in two different soils. The relevance of applying the Gini coefficient as a measure of observed functional diversity, for soil bacterial communities is evaluated against the Shannon index (H) and average well colour development (AWCD), a measure of the total microbial activity. Correlation analysis and analysis of variance of the experimental data show that the Gini coefficient, the Shannon index and AWCD provided similar information when used in isolation. However, analyses based on the Gini coefficient and the Shannon index, when total activity on the microtiter plates was maintained constant (i.e. AWCD as a covariate), indicate that additional information about the distribution of carbon sources being utilised can be obtained. We demonstrate that the Lorenz curve and its measure of inequality, the Gini coefficient, provides not only comparable information to AWCD and the Shannon index but when used together with AWCD encompasses measures of total microbial activity and absorbance inequality across all the carbon sources. This information is especially relevant for comparing the observed functional diversity of soil microbial communities.
Resumo:
Recent data indicate that levels of overweight and obesity are increasing at an alarming rate throughout the world. At a population level (and commonly to assess individual health risk), the prevalence of overweight and obesity is calculated using cut-offs of the Body Mass Index (BMI) derived from height and weight. Similarly, the BMI is also used to classify individuals and to provide a notional indication of potential health risk. It is likely that epidemiologic surveys that are reliant on BMI as a measure of adiposity will overestimate the number of individuals in the overweight (and slightly obese) categories. This tendency to misclassify individuals may be more pronounced in athletic populations or groups in which the proportion of more active individuals is higher. This differential is most pronounced in sports where it is advantageous to have a high BMI (but not necessarily high fatness). To illustrate this point we calculated the BMIs of international professional rugby players from the four teams involved in the semi-finals of the 2003 Rugby Union World Cup. According to the World Health Organisation (WHO) cut-offs for BMI, approximately 65% of the players were classified as overweight and approximately 25% as obese. These findings demonstrate that a high BMI is commonplace (and a potentially desirable attribute for sport performance) in professional rugby players. An unanswered question is what proportion of the wider population, classified as overweight (or obese) according to the BMI, is misclassified according to both fatness and health risk? It is evident that being overweight should not be an obstacle to a physically active lifestyle. Similarly, a reliance on BMI alone may misclassify a number of individuals who might otherwise have been automatically considered fat and/or unfit.