84 resultados para Tropical cut flower
Resumo:
The coral reefs around the world may be likened to canaries down the mineshaft of global warming. These sensitive plant-like animals have evolved for life in tropical seas. Their needs are quite specific – not too cold, not too hot. A rise of as little as one degree Celsius is enough to cause some bleaching of these colourful jewels of the sea. Many climate models indicate we can expect sea temperature increases of between two and six degrees Celsius. Research - such as that detailed in a 2004 report by the University of Queensland’s Centre for Marine Studies – indicates that by the year 2050 most of the worlds major reef systems will be dead. Many of us have heard this kind of information, but it remains difficult to comprehend. It’s almost impossible to imagine the death of the Great Barrier Reef. Some six to nine thousand years old and visible from space, it is the world’s largest structure created by living organisms. Yet whilst it is hard to believe, this gentle, sensitive giant is at grave risk because it cannot adapt quickly enough to the changes in the environment. This cluster of fluffy felt brain coral sculptures are connected in real time to temperature data collected by monitoring stations within the Great Barrier Reef, that form part of the Australian Institute of Marine Science’s Great Barrier Reed Ocean Observing System. These corals display illumination patterns showing changes in sea temperature at Heron Reef, one of the 2,900 reefs that comprise the Great Barrier Reef. Their spectrum of colour ranges from cool hues, through warm tones to bright white when temperatures exceed those that tropical corals are able to tolerate over sustained periods. The Flower Animals also blush in colour and make sound when people come within close proximity. In a reef, fishes and other creatures generate significant amounts of sound. These cacophonies are considered an indicator of reef health, and are used by reef fish to determine where they can best live and forage.
Resumo:
Daylighting in tropical and sub-tropical climates presents a unique challenge that is generally not well understood by designers. In a sub-tropical region such as Brisbane, Australia the majority of the year comprises of sunny clear skies with few overcast days and as a consequence windows can easily become sources of overheating and glare. The main strategy in dealing with this issue is extensive shading on windows. However, this in turn prevents daylight penetration into buildings often causing an interior to appear gloomy and dark even though there is more than sufficient daylight available. As a result electric lighting is the main source of light, even during the day. Innovative daylight devices which redirect light from windows offer a potential solution to this issue. These devices can potentially improve daylighting in buildings by increasing the illumination within the environment decreasing the high contrast between the window and work regions and deflecting potentially glare causing sunlight away from the observer. However, the performance of such innovative daylighting devices are generally quantified under overcast skies (i.e. daylight factors) or skies without sun, which are typical of European climates and are misleading when considering these devices for tropical or sub-tropical climates. This study sought to compare four innovative window daylighting devices in RADIANCE; light shelves, laser cut panels, micro-light guides and light redirecting blinds. These devices were simulated in RADIANCE under sub-tropical skies (for Brisbane) within the test case of a typical CBD office space. For each device the quantity of light redirected and its distribution within the space was used as the basis for comparison. In addition, glare analysis on each device was conducted using Weinold and Christoffersons evalglare. The analysis was conducted for selected hours for a day in each season. The majority of buildings that humans will occupy in their lifetime are already constructed, and extensive remodelling of most of these buildings is unlikely. Therefore the most effective way to improve daylighting in the near future will be through the alteration existing window spaces. Thus it will be important to understand the performance of daylighting systems with respect to the climate it is to be used in. This type of analysis is important to determine the applicability of a daylighting strategy so that designers can achieve energy efficiency as well the health benefits of natural daylight.
Resumo:
The specific mechanisms by which selective pressures affect individuals are often difficult to resolve. In tephritid fruit flies, males respond strongly and positively to certain plant derived chemicals. Sexual selection by female choice has been hypothesized as the mechanism driving this behaviour in certain species, as females preferentially mate with males that have fed on these chemicals. This hypothesis is, to date, based on studies of only very few species and its generality is largely untested. We tested the hypothesis on different spatial scales (small cage and seminatural field-cage) using the monophagous fruit fly, Bactrocera cacuminata. This species is known to respond to methyl eugenol (ME), a chemical found in many plant species and one upon which previous studies have focused. Contrary to expectation, no obvious female choice was apparent in selecting ME-fed males over unfed males as measured by the number of matings achieved over time, copulation duration, or time of copulation initiation. However, the number of matings achieved by ME-fed males was significantly greater than unfed males 16 and 32 days after exposure to ME in small cages (but not in a field-cage). This delayed advantage suggests that ME may not influence the pheromone system of B. cacuminata but may have other consequences, acting on some other fitness consequence (e.g., enhancement of physiology or survival) of male exposure to these chemicals. We discuss the ecological and evolutionary implications of our findings to explore alternate hypotheses to explain the patterns of response of dacine fruit flies to specific plant-derived chemicals.
Resumo:
A month-long intensive measurement campaign was conducted in March/April 2007 at Agnes Water, a remote coastal site just south of the Great Barrier Reef on the east coast of Australia. Particle and ion size distributions were continuously measured during the campaign. Coastal nucleation events were observed in clean, marine air masses coming from the south-east on 65% of the days. The events usually began at ~10:00 local time and lasted for 1-4 hrs. They were characterised by the appearance of a nucleation mode with a peak diameter of ~10 nm. The freshly nucleated particles grew within 1-4 hrs up to sizes of 20-50 nm. The events occurred when solar intensity was high (~1000 W m-2) and RH was low (~60%). Interestingly, the events were not related to tide height. The volatile and hygroscopic properties of freshly nucleated particles (17-22.5 nm), simultaneously measured with a volatility-hygroscopicity-tandem differential mobility analyser (VH-TDMA), were used to infer chemical composition. The majority of the volume of these particles was attributed to internally mixed sulphate and organic components. After ruling out coagulation as a source of significant particle growth, we conclude that the condensation of sulphate and/or organic vapours was most likely responsible for driving particle growth during the nucleation events. We cannot make any direct conclusions regarding the chemical species that participated in the initial particle nucleation. However, we suggest that nucleation may have resulted from the photo-oxidation products of unknown sulphur or organic vapours emitted from the waters of Hervey Bay, or from the formation of DMS-derived sulphate clusters over the open ocean that were activated to observable particles by condensable vapours emitted from the nutrient rich waters around Fraser Island or Hervey Bay. Furthermore, a unique and particularly strong nucleation event was observed during northerly wind. The event began early one morning (08:00) and lasted almost the entire day resulting in the production of a large number of ~80 nm particles (average modal concentration during the event was 3200 cm-3). The Great Barrier Reef was the most likely source of precursor vapours responsible for this event.
Resumo:
We present a new penalty-based genetic algorithm for the multi-source and multi-sink minimum vertex cut problem, and illustrate the algorithm’s usefulness with two real-world applications. It is proved in this paper that the genetic algorithm always produces a feasible solution by exploiting some domain-specific knowledge. The genetic algorithm has been implemented on the example applications and evaluated to show how well it scales as the problem size increases.
Resumo:
Agriculture's contribution to radiative forcing is principally through its historical release of carbon in soil and vegetation to the atmosphere and through its contemporary release of nitrous oxide (N2O) and methane (CHM4). The sequestration of soil carbon in soils now depleted in soil organic matter is a well-known strategy for mitigating the buildup of CO2 in the atmosphere. Less well-recognized are other mitigation potentials. A full-cost accounting of the effects of agriculture on greenhouse gas emissions is necessary to quantify the relative importance of all mitigation options. Such an analysis shows nitrogen fertilizer, agricultural liming, fuel use, N2O emissions, and CH4 fluxes to have additional significant potential for mitigation. By evaluating all sources in terms of their global warming potential it becomes possible to directly evaluate greenhouse policy options for agriculture. A comparison of temperate and tropical systems illustrates some of these options.
Resumo:
In plant cells, myosin is believed to be the molecular motor responsible for actin-based motility processes such as cytoplasmic streaming and directed vesicle transport. In an effort to characterize plant myosin, a cDNA encoding a myosin heavy chain was isolated from Arabidopsis thaliana. The predicted product of the MYA1 gene is 173 kDa and is structurally similar to the class V myosins. It is composed of the highly-conserved NH2-terminal "head" domain, a putative calmodulin-binding "neck" domain an alpha-helical coiled-coil domain, and a COOH-terminal domain. Northern blot analysis shows that the Arabidopsis MYA1 gene is expressed in all the major plant tissues (flower, leaf, root, and stem). We suggest that the MYA1 myosin may be involved in a general intracellular transport process in plant cells.
Resumo:
In the late 20th century, a value-shift began to influence political thinking, recognising the need for environmentally, socially and culturally sustainable resource development. This shift entailed moves away from thinking of nature and culture as separate entities - The former existing merely to serve the latter. Cultural landscape theory recognises 'nature' as at once both 'natural', and as a 'cultural' construct. As such it may offer a framework through which to progress in the quest for 'sustainable development'. This 2005 Masters thesis makes a contribution to that quest by asking whether contemporary developments in cultural landscape theory can contribute to rehabilitation strategies for Australian open-cut coal mining landscapes, an examplar resource development landscape. A thematic historial overview of landscape values and resource development in Australis post-1788, and a review of cultural landscape theory literature contribute to the formation of the theoretical framework: "reconnecting the interrupted landscape". The author then explores a possible application of this framework within the Australian open-cut coal mining landscape.
Resumo:
The Subtropical Design Handbook for Planners is primarily intended to provide advice in developing planning schemes to achieve the South East Queensland Regional Plan’s vision. This calls for ‘development which is sustainable and well-designed, and where the subtropical character of the region is recognised and reinforced’.