246 resultados para Transition Waves


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell invasion, characterised by moving fronts of cells, is an essential aspect of development, repair and disease. Typically, mathematical models of cell invasion are based on the Fisher–Kolmogorov equation. These traditional parabolic models can not be used to represent experimental measurements of individual cell velocities within the invading population since they imply that information propagates with infinite speed. To overcome this limitation we study combined cell motility and proliferation based on a velocity–jump process where information propagates with finite speed. The model treats the total population of cells as two interacting subpopulations: a subpopulation of left–moving cells, $L(x,t)$, and a subpopulation of right–moving cells, $R(x,t)$. This leads to a system of hyperbolic partial differential equations that includes a turning rate, $\Lambda \ge 0$, describing the rate at which individuals in the population change direction of movement. We present exact travelling wave solutions of the system of partial differential equations for the special case where $\Lambda = 0$ and in the limit that $\Lambda \to \infty$. For intermediate turning rates, $0 < \Lambda < \infty$, we analyse the travelling waves using the phase plane and we demonstrate a transition from smooth monotone travelling waves to smooth nonmonotone travelling waves as $\Lambda$ decreases through a critical value $\Lambda_{crit}$. We conclude by providing a qualitative comparison between the travelling wave solutions of our model and experimental observations of cell invasion. This comparison indicates that the small $\Lambda$ limit produces results that are consistent with experimental observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effect of near-wall transition regions on the surface wave propagation in a magnetoactive plasma layer bounded by a metal. It is shown that the account for inhomogeneities of plasma density or magnetic field causes an appearance of coupling between surface waves, propagating across magnetic field and localized near difference boundaries of the structure. The resonance damping of surface waves is analyzed too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The one-dimensional propagation of a combustion wave through a premixed solid fuel for two-stage kinetics is studied. We re-examine the analysis of a single reaction travelling-wave and extend it to the case of two-stage reactions. We derive an expression for the travelling wave speed in the limit of large activation energy for both reactions. The analysis shows that when both reactions are exothermic, the wave structure is similar to the single reaction case. However, when the second reaction is endothermic, the wave structure can be significantly different from single reaction case. In particular, as might be expected, a travelling wave does not necessarily exist in this case. We establish conditions in the limiting large activation energy limit for the non-existence, and for monotonicity of the temperature profile in the travelling wave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This program of research examines the experience of chronic pain in a community sample. While, it is clear that like patient samples, chronic pain in non-patient samples is also associated with psychological distress and physical disability, the experience of pain across the total spectrum of pain conditions (including acute and episodic pain conditions) and during the early course of chronic pain is less clear. Information about these aspects of the pain experience is important because effective early intervention for chronic pain relies on identification of people who are likely to progress to chronicity post-injury. A conceptual model of the transition from acute to chronic pain was proposed by Gatchel (1991a). In brief, Gatchel’s model describes three stages that individuals who have a serious pain experience move through, each with worsening psychological dysfunction and physical disability. The aims of this program of research were to describe the experience of pain in a community sample in order to obtain pain-specific data on the problem of pain in Queensland, and to explore the usefulness of Gatchel’s Model in a non-clinical sample. Additionally, five risk factors and six protective factors were proposed as possible extensions to Gatchel’s Model. To address these aims, a prospective longitudinal mixed-method research design was used. Quantitative data was collected in Phase 1 via a comprehensive postal questionnaire. Phase 2 consisted of a follow-up questionnaire 3 months post-baseline. Phase 3 consisted of semi-structured interviews with a subset of the original sample 12 months post follow-up, which used qualitative data to provide a further in-depth examination of the experience and process of chronic pain from respondents’ point of view. The results indicate chronic pain is associated with high levels of anxiety and depressive symptoms. However, the levels of disability reported by this Queensland sample were generally lower than those reported by clinical samples and consistent with disability data reported in a New South Wales population-based study. With regard to the second aim of this program of research, while some elements of the pain experience of this sample were consistent with that described by Gatchel’s Model, overall the model was not a good fit with the experience of this non-clinical sample. The findings indicate that passive coping strategies (minimising activity), catastrophising, self efficacy, optimism, social support, active strategies (use of distraction) and the belief that emotions affect pain may be important to consider in understanding the processes that underlie the transition to and continuation of chronic pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For certain continuum problems, it is desirable and beneficial to combine two different methods together in order to exploit their advantages while evading their disadvantages. In this paper, a bridging transition algorithm is developed for the combination of the meshfree method (MM) with the finite element method (FEM). In this coupled method, the meshfree method is used in the sub-domain where the MM is required to obtain high accuracy, and the finite element method is employed in other sub-domains where FEM is required to improve the computational efficiency. The MM domain and the FEM domain are connected by a transition (bridging) region. A modified variational formulation and the Lagrange multiplier method are used to ensure the compatibility of displacements and their gradients. To improve the computational efficiency and reduce the meshing cost in the transition region, regularly distributed transition particles, which are independent of either the meshfree nodes or the FE nodes, can be inserted into the transition region. The newly developed coupled method is applied to the stress analysis of 2D solids and structures in order to investigate its’ performance and study parameters. Numerical results show that the present coupled method is convergent, accurate and stable. The coupled method has a promising potential for practical applications, because it can take advantages of both the meshfree method and FEM when overcome their shortcomings.