343 resultados para Training at distance
Resumo:
The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. To our knowledge, Advanced Driver Assistance Systems (ADAS) have never been comprehensively used in designing an intelligent driver training system. Currently, there is a need to develop and evaluate ADAS that could assess driving competencies. The aim is to develop an unsupervised system called Intelligent Driver Training System (IDTS) that analyzes crash risks in a given driving situation. In order to design a comprehensive IDTS, data is collected from the Driver, Vehicle and Environment (DVE), synchronized and analyzed. The first implementation phase of this intelligent driver training system deals with synchronizing multiple variables acquired from DVE. RTMaps is used to collect and synchronize data like GPS, vehicle dynamics and driver head movement. After the data synchronization, maneuvers are segmented out as right turn, left turn and overtake. Each maneuver is composed of several individual tasks that are necessary to be performed in a sequential manner. This paper focuses on turn maneuvers. Some of the tasks required in the analysis of ‘turn’ maneuver are: detect the start and end of the turn, detect the indicator status change, check if the indicator was turned on within a safe distance and check the lane keeping during the turn maneuver. This paper proposes a fusion and analysis of heterogeneous data, mainly involved in driving, to determine the risk factor of particular maneuvers within the drive. It also explains the segmentation and risk analysis of the turn maneuver in a drive.
Resumo:
The over representation of novice drivers in crashes is alarming. Research indicates that one in five drivers’ crashes within their first year of driving. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the drive. This paper presents a system that evaluates the data stream acquired from multiple in-vehicle sensors (acquired from Driver Vehicle Environment-DVE) using fuzzy rules and classifies the driving manoeuvres (i.e. overtake, lane change and turn) as low risk or high risk. The fuzzy rules use parameters such as following distance, frequency of mirror checks, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvre to assess risk. The fuzzy rules to estimate risk are designed after analysing the selected driving manoeuvres performed by driver trainers. This paper focuses mainly on the difference in gaze pattern for experienced and novice drivers during the selected manoeuvres. Using this system, trainers of novice drivers would be able to empirically evaluate and give feedback to the novice drivers regarding their driving behaviour.
Resumo:
The value and effectiveness of driver training as a means of improving driver behaviour and road safety continues to fuel research and societal debates. Knowledge about what are the characteristics of safe driving that need to be learnt is extensive. Research has shown that young drivers are over represented in crash statistics. The encouraging fact is that novice drivers have shown improvement in road scanning pattern after training. This paper presents a driver behaviour study conducted on a closed circuit track. A group of experienced and novice drivers performed repeated multiple manoeuvres (i.e. turn, overtake and lane change) under identical conditions Variables related to the driver, vehicle and environment were recorded in a research vehicle equipped with multiple in-vehicle sensors such as GPS accelerometers, vision processing, eye tracker and laser scanner. Each group exhibited consistently a set of driving pattern characterising a particular group. Behaviour such as the indicator usage before lane change, following distance while performing a manoeuvre were among the consistent observed behaviour differentiating novice from experienced drivers. This paper will highlight the results of our study and emphasize the need for effective driver training programs focusing on young and novice drivers.
Resumo:
The aim of this study was to investigate the effect of court surface (clay v hard-court) on technical, physiological and perceptual responses to on-court training. Four high-performance junior male players performed two identical training sessions on hard and clay courts, respectively. Sessions included both physical conditioning and technical elements as led by the coach. Each session was filmed for later notational analysis of stroke count and error rates. Further, players wore a global positioning satellite device to measure distance covered during each session; whilst heart rate, countermovement jump distance and capillary blood measures of metabolites were measured before, during and following each session. Additionally a respective coach and athlete rating of perceived exertion (RPE) were measured following each session. Total duration and distance covered during of each session were comparable (P>0.05; d<0.20). While forehand and backhands stroke volume did not differ between sessions (P>0.05; d<0.30); large effects for increased unforced and forced errors were present on the hard court (P>0.05; d>0.90). Furthermore, large effects for increased heart rate, blood lactate and RPE values were evident on clay compared to hard courts (P>0.05; d>0.90). Additionally, while player and coach RPE on hard courts were similar, there were large effects for coaches to underrate the RPE of players on clay courts (P>0.05; d>0.90). In conclusion, training on clay courts results in trends for increased heart rate, lactate and RPE values, suggesting sessions on clay tend towards higher physiological and perceptual loads than hard courts. Further, coaches appear effective at rating player RPE on hard courts, but may underrate the perceived exertion of sessions on clay courts.
Resumo:
Background: Heart failure is a serious condition estimated to affect 1.5-2.0% of the Australian population with a point prevalence of approximately 1% in people aged 50-59 years, 10% in people aged 65 years or more and over 50% in people aged 85 years or over (National Heart Foundation of Australian and the Cardiac Society of Australia and New Zealand, 2006). Sleep disturbances are a common complaint of persons with heart failure. Disturbances of sleep can worsen heart failure symptoms, impair independence, reduce quality of life and lead to increased health care utilisation in patients with heart failure. Previous studies have identified exercise as a possible treatment for poor sleep in patients without cardiac disease however there is limited evidence of the effect of this form of treatment in heart failure. Aim: The primary objective of this study was to examine the effect of a supervised, hospital-based exercise training programme on subjective sleep quality in heart failure patients. Secondary objectives were to examine the association between changes in sleep quality and changes in depression, exercise performance and body mass index. Methods: The sample for the study was recruited from metropolitan and regional heart failure services across Brisbane, Queensland. Patients with a recent heart failure related hospital admission who met study inclusion criteria were recruited. Participants were screened by specialist heart failure exercise staff at each site to ensure exercise safety prior to study enrolment. Demographic data, medical history, medications, Pittsburgh Sleep Quality Index score, Geriatric Depression Score, exercise performance (six minute walk test), weight and height were collected at Baseline. Pittsburgh Sleep Quality Index score, Geriatric Depression Score, exercise performance and weight were repeated at 3 months. One hundred and six patients admitted to hospital with heart failure were randomly allocated to a 3-month disease-based management programme of education and self-management support including standard exercise advice (Control) or to the same disease management programme as the Control group with the addition of a tailored physical activity program (Intervention). The intervention consisted of 1 hour of aerobic and resistance exercise twice a week. Programs were designed and supervised by an exercise specialist. The main outcome measure was achievement of a clinically significant change (.3 points) in global Pittsburgh Sleep Quality score. Results: Intervention group participants reported significantly greater clinical improvement in global sleep quality than Control (p=0.016). These patients also exhibited significant improvements in component sleep disturbance (p=0.004), component sleep quality (p=0.015) and global sleep quality (p=0.032) after 3 months of supervised exercise intervention. Improvements in sleep quality correlated with improvements in depression (p<0.001) and six minute walk distance (p=0.04). When study results were examined categorically, with subjects classified as either "poor" or "good" sleepers, subjects in the Control group were significantly more likely to report "poor" sleep at 3 months (p=0.039) while Intervention participants were likely to report "good" sleep at this time (p=0.08). Conclusion: Three months of supervised, hospital based, aerobic and resistance exercise training improved subjective sleep quality in patients with heart failure. This is the first randomised controlled trial to examine the role of aerobic and resistance exercise training in the improvement of sleep quality for patients with this disease. While this study establishes exercise as a therapy for poor sleep quality, further research is needed to investigate the effect of exercise training on objective parameters of sleep in this population.
Resumo:
The use of Mahalanobis squared distance–based novelty detection in statistical damage identification has become increasingly popular in recent years. The merit of the Mahalanobis squared distance–based method is that it is simple and requires low computational effort to enable the use of a higher dimensional damage-sensitive feature, which is generally more sensitive to structural changes. Mahalanobis squared distance–based damage identification is also believed to be one of the most suitable methods for modern sensing systems such as wireless sensors. Although possessing such advantages, this method is rather strict with the input requirement as it assumes the training data to be multivariate normal, which is not always available particularly at an early monitoring stage. As a consequence, it may result in an ill-conditioned training model with erroneous novelty detection and damage identification outcomes. To date, there appears to be no study on how to systematically cope with such practical issues especially in the context of a statistical damage identification problem. To address this need, this article proposes a controlled data generation scheme, which is based upon the Monte Carlo simulation methodology with the addition of several controlling and evaluation tools to assess the condition of output data. By evaluating the convergence of the data condition indices, the proposed scheme is able to determine the optimal setups for the data generation process and subsequently avoid unnecessarily excessive data. The efficacy of this scheme is demonstrated via applications to a benchmark structure data in the field.
Resumo:
This thesis involved research into the barriers and enablers that existed for a cohort of mature-aged education support students engaging with blended learning through distance education. The findings that emerged from this research indicated that a flexible model of blended learning is possible in this context. The findings shed light on the experiences of novice technology users' participation in blended learning. The study highlighted the significance of factors such as isolation, technology, communication, connectivity, prior learning, and the growth of self-efficacy that influenced learner engagement.
Resumo:
This paper outlines a process for fleet safety training based on research and management development programmes undertaken at the University of Huddersfield in the UK (www.hud.ac.uk/sas/trans/transnews.htm) and CARRS-Q in Australia (www.carrsq.qut.edu.au/staff/Murray.jsp) over the past 10 years.