963 resultados para Traction systems
Resumo:
With the advances in computer hardware and software development techniques in the past 25 years, digital computer simulation of train movement and traction systems has been widely adopted as a standard computer-aided engineering tool [1] during the design and development stages of existing and new railway systems. Simulators of different approaches and scales are used extensively to investigate various kinds of system studies. Simulation is now proven to be the cheapest means to carry out performance predication and system behaviour characterisation. When computers were first used to study railway systems, they were mainly employed to perform repetitive but time-consuming computational tasks, such as matrix manipulations for power network solution and exhaustive searches for optimal braking trajectories. With only simple high-level programming languages available at the time, full advantage of the computing hardware could not be taken. Hence, structured simulations of the whole railway system were not very common. Most applications focused on isolated parts of the railway system. It is more appropriate to regard those applications as primarily mechanised calculations rather than simulations. However, a railway system consists of a number of subsystems, such as train movement, power supply and traction drives, which inevitably contains many complexities and diversities. These subsystems interact frequently with each other while the trains are moving; and they have their special features in different railway systems. To further complicate the simulation requirements, constraints like track geometry, speed restrictions and friction have to be considered, not to mention possible non-linearities and uncertainties in the system. In order to provide a comprehensive and accurate account of system behaviour through simulation, a large amount of data has to be organised systematically to ensure easy access and efficient representation; the interactions and relationships among the subsystems should be defined explicitly. These requirements call for sophisticated and effective simulation models for each component of the system. The software development techniques available nowadays allow the evolution of such simulation models. Not only can the applicability of the simulators be largely enhanced by advanced software design, maintainability and modularity for easy understanding and further development, and portability for various hardware platforms are also encouraged. The objective of this paper is to review the development of a number of approaches to simulation models. Attention is, in particular, given to models for train movement, power supply systems and traction drives. These models have been successfully used to enable various ‘what-if’ issues to be resolved effectively in a wide range of applications, such as speed profiles, energy consumption, run times etc.
Resumo:
Rolling element bearings are the most critical components in the traction system of high speed trains. Monitoring their integrity is a fundamental operation in order to avoid catastrophic failures and to implement effective condition based maintenance strategies. Generally, diagnostics of rolling element bearings is usually performed by analyzing vibration signals measured by accelerometers placed in the proximity of the bearing under investigation. Several papers have been published on this subject in the last two decades, mainly devoted to the development and assessment of signal processing techniques for diagnostics. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in specific industrial applications, particularly in rail industry, remains scarcely investigated. This paper is aimed at filling this knowledge gap, by addressing the diagnostics of bearings taken from the service after a long term operation on the traction system of a high speed train. Moreover, in order to test the effectiveness of the diagnostic procedures in the environmental conditions peculiar to the rail application, a specific test-rig has been built, consisting of a complete full-scale train traction system, able to reproduce the effects of wheeltrack interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is proposed, in order to limit their number.
Resumo:
Routing trains within passenger stations in major cities is a common scheduling problem for railway operation. Various studies have been undertaken to derive and formulate solutions to this route allocation problem (RAP) which is particularly evident in mainland China nowadays because of the growing traffic demand and limited station capacity. A reasonable solution must be selected from a set of available RAP solutions attained in the planning stage to facilitate station operation. The selection is however based on the experience of the operators only and objective evaluation of the solutions is rarely addressed. In order to maximise the utilisation of station capacity while maintaining service quality and allowing for service disturbance, quantitative evaluation of RAP solutions is highly desirable. In this study, quantitative evaluation of RAP solutions is proposed and it is enabled by a set of indices covering infrastructure utilisation, buffer times and delay propagation. The proposed evaluation is carried out on a number of RAP solutions at a real-life busy railway station in mainland China and the results highlight the effectiveness of the indices in pinpointing the strengths and weaknesses of the solutions. This study provides the necessary platform to improve the RAP solution in planning and to allow train re-routing upon service disturbances.
Resumo:
For decades, the development, construction, track ownership and operation of mainline railways in China have been overseen by the state-owned authorities. From mid-90’s, the mainline railway management has undergone revamps to revitalize the intra-modal competitiveness of railway transportation and to steer it toward the direction of modern business management. With the rapid economic growth; the large-scale expansion of the mainline network; and the increasing expectation on service, the mainline railways in China require further restructuring. Inevitably, a sustainable approach to ensure business viability and service quality in the next few decades is an imminent challenge. This paper reviews the operations and management of mainline railway in China and discusses the possibility of introducing open access market. Drawing the experiences on railway open markets outside China, the discussions include the need and feasibility of railway open market in China; and the suitability and limitations of different models. Particular considerations will be given to the unique characteristics of the mainline railways in China, where the developments across neighbouring regions are unbalanced; freight and passenger services are of similar demands; and the high-speed train operations are operated with low-speed ones in mixed traffic.
Resumo:
The signal processing techniques developed for the diagnostics of mechanical components operating in stationary conditions are often not applicable or are affected by a loss of effectiveness when applied to signals measured in transient conditions. In this chapter, an original signal processing tool is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition, Minimum Entropy Deconvolution and the analytical approach of the Hilbert transform. The tool has been developed to detect localized faults on bearings of traction systems of high speed trains and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on envelope analysis or spectral kurtosis, which represent until now the landmark for bearings diagnostics.
Resumo:
An asset registry arguably forms the core system that needs to be in place before other systems can operate or interoperate. Most systems have rudimentary asset registry functionality that store assets, relationships, or characteristics, and this leads to different asset management systems storing similar sets of data in multiple locations in an organisation. As organisations have been slowly moving their information architecture toward a service-oriented architecture, they have also been consolidating their multiple data stores, to form a “single point of truth”. As part of a strategy to integrate several asset management systems in an Australian railway organisation, a case study for developing a consolidated asset registry was conducted. A decision was made to use the MIMOSA OSA-EAI CRIS data model as well as the OSA-EAI Reference Data in building the platform due to the standard’s relative maturity and completeness. A pilot study of electrical traction equipment was selected, and the data sources feeding into the asset registry were primarily diagrammatic based. This paper presents the pitfalls encountered, approaches taken, and lessons learned during the development of the asset registry.
Resumo:
Fault tree analysis (FTA) is presented to model the reliability of a railway traction power system in this paper. First, the construction of fault tree is introduced to integrate components in traction power systems into a fault tree; then the binary decision diagram (BDD) method is used to evaluate fault trees qualitatively and quantitatively. The components contributing to the reliability of overall system are identified with their relative importance through sensitivity analysis. Finally, an AC traction power system is evaluated by the proposed methods.
Resumo:
Power load flow analysis is essential for system planning, operation, development and maintenance. Its application on railway supply system is no exception. Railway power supplies system distinguishes itself in terms of load pattern and mobility, as well as feeding system structure. An attempt has been made to apply probability load flow (PLF) techniques on electrified railways in order to examine the loading on the feeding substations and the voltage profiles of the trains. This study is to formulate a simple and reliable model to support the necessary calculations for probability load flow analysis in railway systems with autotransformer (AT) feeding system, and describe the development of a software suite to realise the computation.
Resumo:
This paper describes a thorough thermal study on a fleet of DC traction motors which were found to suffer from overheating after 3 years of full operation. Overheating of these traction motors is attributed partly because of the higher than expected number of starts and stops between train terminals. Another probable cause of overheating is the design of the traction motor and/or its control strategy. According to the motor manufacturer, a current shunt is permanently connected across the motor field winding. Hence, some of the armature current is bypassed into the current shunt. The motor then runs above its rated speed in the field weakening mode. In this study, a finite difference model has been developed to simulate the temperature profile at different parts inside the traction motor. In order to validate the simulation result, an empty vehicle loaded with drums of water was also used to simulate the full pay-load of a light rail vehicle experimentally. The authors report that the simulation results agree reasonably well with experimental data, and it is likely that the armature of the traction motor will run cooler if its field shunt is disconnected at low speeds
Resumo:
Track defects cause profound effects to the stability of railway wagons; normally such problems are modeled for cases of wagons running at constant speed. Brake/traction torque adversely affect the wheel-rail contact characteristics but they are not explicitly considered in most of the wagon-track interaction simulation packages. This research developed a program that can simulate the longitudinal behaviour of railway wagon dynamics under the actions of braking or traction torques. This paper describes the mathematical formulation of modelling of a full wagon system using a fixed coordinate reference system. The effect of both the lateral and the vertical track geometry defects to the dynamics of wagons is reported; sensitivity of traction/brake state is analysed through a series of numerical examples.
Resumo:
Electricity has been the major source of power in most railway systems. Reliable, efficient and safe power distribution to the trains is vitally important to the overall quality of railway service. Like any large-scale engineering system, design, operation and planning of traction power systems rely heavily on computer simulation. This paper reviews the major features on modelling and the general practices for traction power system simulation; and introduces the development of the latest simulation approach with discussions on simulation results and practical applications. Remarks will also be given on the future challenges on traction power system simulation.
Resumo:
Major advances in power electronics during recent years have prompted considerable interest within the traction community. The capability of new technologies to reduce the AC railway networks' effect on power quality and improve their supply efficiency is expected to significantly decrease the cost of electric rail supply systems. Of particular interest are Static Frequency Converter (SFC), Rail Power Conditioner (RPC), High Voltage Direct Current (HVDC) and Energy Storage Systems (ESS) solutions. Substantial impacts on future feasibility of railway electrification are anticipated. Aurizon, Australia's largest heavy haul railway operator, has recently commissioned the world's first 50Hz/50Hz SFC installation and is currently investigating SFC, RPC, HVDC and ESS solutions. This paper presents a summary of current and emerging technologies with a particular focus on the potential techno-economic benefits.
Resumo:
Aurizon, Australia's largest rail freight operator, is introducing the Static Frequency Converter (SFC) technology into its electric railway network as part of the Bauhinia Electrification Project. The introduction of SFCs has significant implications on the protection systems of the 50kV traction network. The traditional distance protection calculation method does not work in this configuration because of the effect that the SFC in combination with the remote grid has on the apparent impedance, and was substantially reviewed. The standard overcurrent (OC) protection scheme is not suitable due to the minimum fault level being below the maximum load level and was revised to incorporate directionality and under-voltage inhibit. Delta protection was reviewed to improve sensitivity. A new protection function was introduced to prevent back-feeding faults in the transmission network through the grid connection. Protection inter-tripping was included to ensure selectivity between the SFC protection and the system downstream.