361 resultados para Tilted-time window model
Resumo:
This paper presents a single pass algorithm for mining discriminative Itemsets in data streams using a novel data structure and the tilted-time window model. Discriminative Itemsets are defined as Itemsets that are frequent in one data stream and their frequency in that stream is much higher than the rest of the streams in the dataset. In order to deal with the data structure size, we propose a pruning process that results in the compact tree structure containing discriminative Itemsets. Empirical analysis shows the sound time and space complexity of the proposed method.
Resumo:
This paper presents a travel time prediction model and evaluates its performance and transferability. Advanced Travelers Information Systems (ATIS) are gaining more and more importance, increasing the need for accurate, timely and useful information to the travelers. Travel time information quantifies the traffic condition in an easy to understand way for the users. The proposed travel time prediction model is based on an efficient use of nearest neighbor search. The model is calibrated for optimal performance using Genetic Algorithms. Results indicate better performance by using the proposed model than the presently used naïve model.
Resumo:
An advanced rule-based Transit Signal Priority (TSP) control method is presented in this paper. An on-line transit travel time prediction model is the key component of the proposed method, which enables the selection of the most appropriate TSP plans for the prevailing traffic and transit condition. The new method also adopts a priority plan re-development feature that enables modifying or even switching the already implemented priority plan to accommodate changes in the traffic conditions. The proposed method utilizes conventional green extension and red truncation strategies and also two new strategies including green truncation and queue clearance. The new method is evaluated against a typical active TSP strategy and also the base case scenario assuming no TSP control in microsimulation. The evaluation results indicate that the proposed method can produce significant benefits in reducing the bus delay time and improving the service regularity with negligible adverse impacts on the non-transit street traffic.
Resumo:
Most studies examining the temperature–mortality association in a city used temperatures from one site or the average from a network of sites. This may cause measurement error as temperature varies across a city due to effects such as urban heat islands. We examined whether spatiotemporal models using spatially resolved temperatures produced different associations between temperature and mortality compared with time series models that used non-spatial temperatures. We obtained daily mortality data in 163 areas across Brisbane city, Australia from 2000 to 2004. We used ordinary kriging to interpolate spatial temperature variation across the city based on 19 monitoring sites. We used a spatiotemporal model to examine the impact of spatially resolved temperatures on mortality. Also, we used a time series model to examine non-spatial temperatures using a single site and the average temperature from three sites. We used squared Pearson scaled residuals to compare model fit. We found that kriged temperatures were consistent with observed temperatures. Spatiotemporal models using kriged temperature data yielded slightly better model fit than time series models using a single site or the average of three sites' data. Despite this better fit, spatiotemporal and time series models produced similar associations between temperature and mortality. In conclusion, time series models using non-spatial temperatures were equally good at estimating the city-wide association between temperature and mortality as spatiotemporal models.
Resumo:
Travel time estimation and prediction on motorways has long been a topic of research. Prediction modeling generally assumes that the estimation is perfect. No matter how good is the prediction modeling- the errors in estimation can significantly deteriorate the accuracy and reliability of the prediction. Models have been proposed to estimate travel time from loop detector data. Generally, detectors are closely spaced (say 500m) and travel time can be estimated accurately. However, detectors are not always perfect, and even during normal running conditions few detectors malfunction, resulting in increase in the spacing between the functional detectors. Under such conditions, error in the travel time estimation is significantly large and generally unacceptable. This research evaluates the in-practice travel time estimation model during different traffic conditions. It is observed that the existing models fail to accurately estimate travel time during large detector spacing and congestion shoulder periods. Addressing this issue, an innovative Hybrid model that only considers loop data for travel time estimation is proposed. The model is tested using simulation and is validated with real Bluetooth data from Pacific Motorway Brisbane. Results indicate that during non free flow conditions and larger detector spacing Hybrid model provides significant improvement in the accuracy of travel time estimation.
Resumo:
Harmful Algal Blooms (HABs) are a worldwide problem that have been increasing in frequency and extent over the past several decades. HABs severely damage aquatic ecosystems by destroying benthic habitat, reducing invertebrate and fish populations and affecting larger species such as dugong that rely on seagrasses for food. Few statistical models for predicting HAB occurrences have been developed, and in common with most predictive models in ecology, those that have been developed do not fully account for uncertainties in parameters and model structure. This makes management decisions based on these predictions more risky than might be supposed. We used a probit time series model and Bayesian Model Averaging (BMA) to predict occurrences of blooms of Lyngbya majuscula, a toxic cyanophyte, in Deception Bay, Queensland, Australia. We found a suite of useful predictors for HAB occurrence, with Temperature figuring prominently in models with the majority of posterior support, and a model consisting of the single covariate average monthly minimum temperature showed by far the greatest posterior support. A comparison of alternative model averaging strategies was made with one strategy using the full posterior distribution and a simpler approach that utilised the majority of the posterior distribution for predictions but with vastly fewer models. Both BMA approaches showed excellent predictive performance with little difference in their predictive capacity. Applications of BMA are still rare in ecology, particularly in management settings. This study demonstrates the power of BMA as an important management tool that is capable of high predictive performance while fully accounting for both parameter and model uncertainty.
Resumo:
In this paper techniques for scheduling additional train services (SATS) are considered as is train scheduling involving general time window constraints, fixed operations, maintenance activities and periods of section unavailability. The SATS problem is important because additional services must often be given access to the railway and subsequently integrated into current timetables. The SATS problem therefore considers the competition for railway infrastructure between new services and existing services belonging to the same or different operators. The SATS problem is characterised as a hybrid job shop scheduling problem with time window constraints. To solve this problem constructive algorithm and metaheuristic scheduling techniques that operate upon a disjunctive graph model of train operations are utilised. From numerical investigations the proposed framework and associated techniques are tested and shown to be effective.
Resumo:
Typical daily decision-making process of individuals regarding use of transport system involves mainly three types of decisions: mode choice, departure time choice and route choice. This paper focuses on the mode and departure time choice processes and studies different model specifications for a combined mode and departure time choice model. The paper compares different sets of explanatory variables as well as different model structures to capture the correlation among alternatives and taste variations among the commuters. The main hypothesis tested in this paper is that departure time alternatives are also correlated by the amount of delay. Correlation among different alternatives is confirmed by analyzing different nesting structures as well as error component formulations. Random coefficient logit models confirm the presence of the random taste heterogeneity across commuters. Mixed nested logit models are estimated to jointly account for the random taste heterogeneity and the correlation among different alternatives. Results indicate that accounting for the random taste heterogeneity as well as inter-alternative correlation improves the model performance.
Resumo:
This article examined the relationship between time structure and Macan's process model of time management. This study proposed that time structure—‘appraisal of effective time usage’—would be a more parsimonious mediator than perceived control over time in the relationship between time management behaviours and outcome variables, such as job satisfaction and psychological well-being. Alternative structure models were compared using a sample of 111 university students. Model 1 tested Macan's process model of time management with perceived control over time as the mediator. Model 2 replaced perceived control over time by the construct of time structure. Model 3 examined the possibility of perceived control over time and time structure as being parallel mediators of the relationships between time management and outcomes. Results of this study showed that Model 1 and Model 2 fitted the data equally well. On the other hand, the mediated effects were small and partial in both models. This pattern of results calls for reassessment of the process model.
Resumo:
Precise identification of the time when a change in a hospital outcome has occurred enables clinical experts to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for survival time of a clinical procedure in the presence of patient mix in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step change in the mean survival time of patients who underwent cardiac surgery. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. Markov Chain Monte Carlo is used to obtain posterior distributions of the change point parameters including location and magnitude of changes and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time CUSUM control charts for different magnitude scenarios. The proposed estimator shows a better performance where a longer follow-up period, censoring time, is applied. In comparison with the alternative built-in CUSUM estimator, more accurate and precise estimates are obtained by the Bayesian estimator. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.
Resumo:
This article explores an important temporal aspect of the design of strategic alliances by focusing on the issue of time bounds specification. Time bounds specification refers to a choice on behalf of prospective alliance partners at the time of alliance formation to either pre-specify the duration of an alliance to a specific time window, or to keep the alliance open-ended (Reuer & Ariňo, 2007). For instance, Das (2006) mentions the example of the alliance between Telemundo Network and Mexican Argos Comunicacion (MAC). Announced in October 2000, this alliance entailed a joint production of 1200 hours of comedy, news, drama, reality and novella programs (Das, 2006). Conditioned on the projected date of completing the 1200 hours of programs, Telemundo Network and MAC pre-specified the time bounds of the alliance ex ante. Such time-bound alliances are said to be particularly prevalent in project-based industries, like movie production, construction, telecommunications and pharmaceuticals (Schwab & Miner, 2008). In many other instances, however, firms may choose to keep their alliances open-ended, not specifying a specific time bound at the time of alliance formation. The choice between designing open-ended alliances that are “built to last”, versus time bound alliances that are “meant to end” is important. Seminal works like Axelrod (1984), Heide & Miner (1992), and Parkhe (1993) demonstrated that the choice to place temporal bounds on a collaborative venture has important implications. More specifically, collaborations that have explicit, short term time bounds (i.e. what is termed a shorter “shadow of the future”) are more likely to experience opportunism (Axelrod, 1984), are more likely to focus on the immediate present (Bakker, Boros, Kenis & Oerlemans, 2012), and are less likely to develop trust (Parkhe, 1993) than alliances for which time bounds are kept indeterminate. These factors, in turn, have been shown to have important implications for the performance of alliances (e.g. Kale, Singh & Perlmutter, 2000). Thus, there seems to be a strong incentive for organizations to form open-ended strategic alliances. And yet, Reuer & Ariňo (2007), one of few empirical studies that details the prevalence of time-bound and open-ended strategic alliances, found that about half (47%) of the alliances in their sample were time bound, the other half were open-ended. What conditions, then, determine this choice?
Resumo:
Background The association between temperature and mortality has been examined mainly in North America and Europe. However, less evidence is available in developing countries, especially in Thailand. In this study, we examined the relationship between temperature and mortality in Chiang Mai city, Thailand, during 1999–2008. Method A time series model was used to examine the effects of temperature on cause-specific mortality (non-external, cardiopulmonary, cardiovascular, and respiratory) and age-specific non-external mortality (<=64, 65–74, 75–84, and > =85 years), while controlling for relative humidity, air pollution, day of the week, season and long-term trend. We used a distributed lag non-linear model to examine the delayed effects of temperature on mortality up to 21 days. Results We found non-linear effects of temperature on all mortality types and age groups. Both hot and cold temperatures resulted in immediate increase in all mortality types and age groups. Generally, the hot effects on all mortality types and age groups were short-term, while the cold effects lasted longer. The relative risk of non-external mortality associated with cold temperature (19.35°C, 1st percentile of temperature) relative to 24.7°C (25th percentile of temperature) was 1.29 (95% confidence interval (CI): 1.16, 1.44) for lags 0–21. The relative risk of non-external mortality associated with high temperature (31.7°C, 99th percentile of temperature) relative to 28°C (75th percentile of temperature) was 1.11 (95% CI: 1.00, 1.24) for lags 0–21. Conclusion This study indicates that exposure to both hot and cold temperatures were related to increased mortality. Both cold and hot effects occurred immediately but cold effects lasted longer than hot effects. This study provides useful data for policy makers to better prepare local responses to manage the impact of hot and cold temperatures on population health.
Resumo:
Nuclei and electrons in condensed matter and/or molecules are usually entangled, due to the prevailing (mainly electromagnetic) interactions. However, the "environment" of a microscopic scattering system (e.g. a proton) causes ultrafast decoherence, thus making atomic and/or nuclear entanglement e®ects not directly accessible to experiments. However, our neutron Compton scattering experiments from protons (H-atoms) in condensed systems and molecules have a characteristic collisional time about 100|1000 attoseconds. The quantum dynamics of an atom in this ultrashort, but ¯nite, time window is governed by non-unitary time evolution due to the aforementioned decoherence. Unexpectedly, recent theoretical investigations have shown that decoherence can also have the following energetic consequences. Disentangling two subsystems A and B of a quantum system AB is tantamount to erasure of quantum phase relations between A and B. This erasure is widely believed to be an innocuous process, which e.g. does not a®ect the energies of A and B. However, two independent groups proved recently that disentangling two systems, within a su±ciently short time interval, causes increase of their energies. This is also derivable by the simplest Lindblad-type master equation of one particle being subject to pure decoherence. Our neutron-proton scattering experiments with H2 molecules provide for the first time experimental evidence of this e®ect. Our results reveal that the neutron-proton collision, leading to the cleavage of the H-H bond in the attosecond timescale, is accompanied by larger energy transfer (by about 2|3%) than conventional theory predicts. Preliminary results from current investigations show qualitatively the same e®ect in the neutron-deuteron Compton scattering from D2 molecules. We interpret the experimental findings by treating the neutron-proton (or neutron-deuteron) collisional system as an entangled open quantum system being subject to fast decoherence caused by its "environment" (i.e., two electrons plus second nucleus of H2 or D2). The presented results seem to be of generic nature, and may have considerable consequences for various processes in condensed matter and molecules, e.g. in elementary chemical reactions.