103 resultados para TRANSVERSE
Resumo:
The buckling strength of a new cold-formed hollow flange channel section known as LiteSteel beam (LSB) is governed by lateral distortional buckling characterised by simultaneous lateral deflection, twist and web distortion for its intermediate spans. Recent research has developed a modified elastic lateral buckling moment equation to allow for lateral distortional buckling effects. However, it is limited to a uniform moment distribution condition that rarely exists in practice. Transverse loading introduces a non-uniform bending moment distribution, which is also often applied above or below the shear centre (load height). These loading conditions are known to have significant effects on the lateral buckling strength of beams. Many steel design codes have adopted equivalent uniform moment distribution and load height factors to allow for these effects. But they were derived mostly based on data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The moment distribution and load height effects of transverse loading for LSBs, and the suitability of the current design modification factors to accommodate these effects for LSBs is not known. This paper presents the details of a research study based on finite element analyses on the elastic lateral buckling strength of simply supported LSBs subject to transverse loading. It discusses the suitability of the current steel design code modification factors, and provides suitable recommendations for simply supported LSBs subject to transverse loading.
Resumo:
Increased industrialisation has brought to the forefront the susceptibility of concrete columns in both buildings and bridges to vehicle impacts. Accurate vulnerability assessments are crucial in the design process due to possible catastrophic nature of the failures that can cause. This paper reports on research undertaken to investigate the impact capacity of the columns of low to medium raised building designed according to Australian Standards. Numerical simulation techniques were used in the process and validation was done by using experimental results published in the literature. The investigation thus far has confirmed that vulnerability of typical columns in five story buildings located in urban areas to medium velocity car impacts and hence these columns need to be re-designed (if possible) or retrofitted. In addition, accuracy of the simplified method presented in EN 1991 to quantify the impact damage was scrutinised. A simplified concept to assess the damage due to all collisions modes was introduced. The research information will be extended to generate a common data base to assess the vulnerability of columns in urban areas against new generation of vehicles.
Resumo:
With a view to assessing the vulnerability of columns to low elevation vehicular impacts, a non-linear explicit numerical model has been developed and validated using existing experimental results. The numerical model accounts for the effects of strain rate and confinement of the reinforced concrete, which are fundamental to the successful prediction of the impact response. The sensitivity of the material model parameters used for the validation is also scrutinised and numerical tests are performed to examine their suitability to simulate the shear failure conditions. Conflicting views on the strain gradient effects are discussed and the validation process is extended to investigate the ability of the equations developed under concentric loading conditions to simulate flexural failure events. Experimental data on impact force–time histories, mid span and residual deflections and support reactions have been verified against corresponding numerical results. A universal technique which can be applied to determine the vulnerability of the impacted columns against collisions with new generation vehicles under the most common impact modes is proposed. Additionally, the observed failure characteristics of the impacted columns are explained using extended outcomes. Based on the overall results, an analytical method is suggested to quantify the vulnerability of the columns.
Resumo:
Increased industrialisation has brought to the forefront the susceptibility of concrete columns in both buildings and bridges to vehicle impacts. Accurate vulnerability assessments are crucial in the design process due to possible catastrophic nature of the failures that can cause. This chapter reports on research undertaken to investigate the impact capacity of the columns of low to medium raised building designed according to the Australian standards. Numerical simulation techniques were used in the process and validation was done by using experimental results published in the literature. The investigation thus far has confirmed that vulnerability of typical columns in five story buildings located in urban areas to medium velocity car impacts and hence these columns need to be re-designed or retrofitted. In addition, accuracy of the simplified method presented in EN 1991-1-7 to quantify the impact damage was scrutinised. A simplified concept to assess the damage due to all collisions modes was introduced. The research information will be extended to generate a common data base to assess the vulnerability of columns in urban areas against new generation of vehicles.
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using its patented dual electric resistance welding and automated continuous roll-forming technologies. The LSB has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. Its flexural strength for intermediate spans is governed by lateral distortional buckling characterised by simultaneous lateral deflection, twist and web distortion. Recent research on LSBs has mainly focussed on their lateral distortional buckling behaviour under uniform moment conditions. However, in practice, LSB flexural members are subjected to non-uniform moment distributions and load height effects as they are often under transverse loads applied above or below their shear centre. These loading conditions are known to have significant effects on the lateral buckling strength of beams. Many steel design codes have adopted equivalent uniform moment distribution and load height factors based on data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The non-uniform moment distribution and load height effects of transverse loading on cantilever LSBs, and the suitability of the current design modification factors to include such effects are not known. This paper presents a numerical study based on finite element analyses of the elastic lateral buckling strength of cantilever LSBs subject to transverse loading, and the results. The applicability of the design modification factors from various steel design codes was reviewed, and suitable recommendations are presented for cantilever LSBs subject to transverse loading.
Resumo:
The only effective method of Fiber Bragg Grating (FBG) strain modulation has been by changing the distance between its two fixed ends. We demonstrate an alternative being more sensitive to force based on the nonlinear amplification relationship between a transverse force applied to a stretched string and its induced axial force. It may improve the sensitivity and size of an FBG force sensor, reduce the number of FBGs needed for multi-axial force monitoring, and control the resonant frequency of an FBG accelerometer.
Resumo:
Objective To evaluate the time course of the recovery of transverse strain in the Achilles and patellar tendon following a bout of resistance exercise. Methods Seventeen healthy adults underwent sonographic examination of the right patellar (n=9) and Achilles (n=8) tendons immediately prior to and following 90 repetitions of weight-bearing quadriceps and gastrocnemius-resistance exercise performed against an effective resistance of 175% and 250% body weight, respectively. Sagittal tendon thickness was determined 20 mm from the enthesis and transverse strain, as defined by the stretch ratio, was repeatedly monitored over a 24 h recovery period. Results Resistance exercise resulted in an immediate decrease in Achilles (t7=10.6, p<0.01) and patellar (t8=8.9, p<0.01) tendon thickness, resulting in an average transverse stretch ratio of 0.86±0.04 and 0.82±0.05, which was not significantly different between tendons. The magnitude of the immediate transverse strain response, however, was reduced with advancing age (r=0.63, p<0.01). Recovery in transverse strain was prolonged compared with the duration of loading and exponential in nature. The average primary recovery time was not significantly different between the Achilles (6.5±3.2 h) and patellar (7.1±3.2 h) tendons. Body weight accounted for 62% and 64% of the variation in recovery time, respectively. Conclusions Despite structural and biochemical differences between the Achilles and patellar tendon, the mechanisms underlying transverse creep recovery in vivo appear similar and are highly time dependent. These novel findings have important implications concerning the time required for the mechanical recovery of high-stress tendons following an acute bout of exercise.
Resumo:
Introduction: The human patellar tendon is highly adaptive to changes in habitual loading but little is known about its acute mechanical response to exercise. This research evaluated the immediate transverse strain response of the patellar tendon to a bout of resistive quadriceps exercise. Methods: Twelve healthy adult males (mean age 34.0+/-12.1 years, height 1.75+/-0.09 m and weight 76.7+/-12.3 kg) free of knee pain participated in the research. A 10-5 MHz linear-array transducer was used to acquire standardised sagittal sonograms of the right patellar tendon immediately prior to and following 90 repetitions of a double-leg parallel-squat exercise performed against a resistance of 175% bodyweight. Tendon thickness was determined 20-mm distal to the pole of the patellar and transverse Hencky strain was calculated as the natural log of the ratio of post- to pre-exercise tendon thickness and expressed as a percentage. Measures of tendon echotexture (echogenicity and entropy) were also calculated from subsequent gray-scale profiles. Results: Quadriceps exercise resulted in an immediate decrease in patellar tendon thickness (P<.05), equating to a transverse strain of -22.5+/-3.4%, and was accompanied by increased tendon echogenicity (P<.05) and decreased entropy (P<.05). The transverse strain response of the patellar tendon was significantly correlated with both tendon echogenicity (r = -0.58, P<.05) and entropy following exercise (r=0.73, P<.05), while older age was associated with greater entropy of the patellar tendon prior to exercise (r=0.79, P<.05) and a reduced transverse strain response (r=0.61, P<.05) following exercise. Conclusions: This study is the first to show that quadriceps exercise invokes structural alignment and fluid movement within the matrix that are manifest by changes in echotexture and transverse strain in the patellar tendon., (C)2012The American College of Sports Medicine
Resumo:
This research evaluated the effect of obesity on the acute cumulative transverse strain of the Achilles tendon in response to exercise. Twenty healthy adult males were categorized into ‘low normal-weight’ (BMI <23 kg m−2) and ‘overweight’ (BMI >27.5 kg m−2) groups based on intermediate cut-off points recommended by the World Health Organization. Longitudinal sonograms of the right Achilles tendon were acquired immediately prior and following weight-bearing ankle exercises. Achilles tendon thickness was measured 20-mm proximal to the calcaneal insertion and transverse tendon strain was calculated as the natural log of the ratio of post- to pre-exercise tendon thickness. The Achilles tendon was thicker in the overweight group both prior to (t18 = −2.91, P = 0.009) and following (t18 = −4.87, P < 0.001) exercise. The acute transverse strain response of the Achilles tendon in the overweight group (−10.7 ± 2.5%), however, was almost half that of the ‘low normal-weight’ (−19.5 ± 7.4%) group (t18 = −3.56, P = 0.004). These findings suggest that obesity is associated with structural changes in tendon that impairs intra-tendinous fluid movement in response to load and provides new insights into the link between tendon pathology and overweight and obesity.
Resumo:
The first fiber Bragg grating (FBG) accelerometer using direct transverse forces is demonstrated by fixing the FBG by its two ends and placing a transversely moving inertial object at its middle. It is very sensitive because a lightly stretched FBG is more sensitive to transverse forces than axial forces. Its resonant frequency and static sensitivity are analyzed by the classic spring-mass theory, assuming the axial force changes little. The experiments show that the theory can be modified for cases where the assumption does not hold. The resonant frequency can be modified by a linear relationship experimentally achieved, and the static sensitivity by an alternative method proposed. The principles of the over-range protection and low cross axial sensitivity are achieved by limiting the movement of the FBG and were validated experimentally. The sensitivities 1.333 and 0.634 nm/g were experimentally achieved by 5.29 and 2.83 gram inertial objects at 10 Hz from 0.1 to 0.4 g (g = 9.8 m/s 2), respectively, and their resonant frequencies were around 25 Hz. Their theoretical static sensitivities and resonant frequencies found by the modifications are 1.188 nm/g and 26.81 Hz for the 5.29 gram one and 0.784 nm/g and 29.04 Hz for the 2.83 gram one, respectively.
Resumo:
Crest-fixed steel claddings made of thin, high strength steel often suffer from local pull-through failures at their screw connections during high wind events such as storms and hurricanes. Currently there aren't any adequate design provisions for these cladding systems except for the expensive testing provisions. Since the local pull-through failures in the less ductile steel claddings are initiated by transverse splitting at the fastener hole, analytical studies have not been able to determine the pull-through failure loads. Analytical studies could be used if a reliable splitting criterion is available. Therefore a series of two-span cladding tests was conducted on a range of crest-fixed steel cladding systems under simulated wind uplift loads. The strains in the sheeting around the critical fastener holes were measured until the pull-through failure. This paper presents the details of the experimental investigation and the results including a strain criterion for the local pull-through failure.
Resumo:
Background. This study evaluated the time course of recovery of transverse strain in the Achilles and patellar tendons following a bout of resistance exercise. Methods. Seventeen healthy adults underwent sonographic examination of the right patellar (n = 9) or Achilles (n = 8) tendons immediately prior to and following 90 repetitions of weight–bearing exercise. Quadriceps and gastrocnemius exercise were performed against an effective resistance of 175% and 250% body weight, respectively. Sagittal tendon thickness was determined 20 mm from the tendon enthesis and transverse strain was repeatedly monitored over a 24 hour recovery period. Results. Resistance exercise resulted in an immediate decrease in Achilles (t7 = 10.6, P<.01) and patellar (t8 = 8.9, P<.01) tendon thickness, resulting in an average transverse strain of 0.14 ± 0.04 and 0.18 ± 0.05. While the average strain was not significantly different between tendons, older age was associated with a reduced transverse strain response (r=0.63, P<.01). Recovery of transverse strain, in contrast, was prolonged compared with the duration of loading and exponential in nature. The mean primary recovery time was not significantly different between Achilles (6.5 ± 3.2 hours) and patellar (7.1 ± 3.2 hours) tendons and body weight accounted for 62% and 64% of the variation in recovery time, respectively. Discussion. Despite structural and biochemical differences between the Achilles and patellar tendons [1], the mechanisms underlying transverse creep–recovery in vivo appear similar and are highly time dependent. Primary recovery required about 7 hours in healthy tendons, with full recovery requiring up to 24 hours. These in vivo recovery times are similar to those reported for axial creep recovery of the vertebral disc in vitro [2], and may be used clinically to guide physical activity to rest ratios in healthy adults. Optimal ratios for high–stress tendons in clinical populations, however, remain unknown and require further attention in light of the knowledge gained in this study.