440 resultados para Surface strains
Resumo:
Introduction Ovine models are widely used in orthopaedic research. To better understand the impact of orthopaedic procedures computer simulations are necessary. 3D finite element (FE) models of bones allow implant designs to be investigated mechanically, thereby reducing mechanical testing. Hypothesis We present the development and validation of an ovine tibia FE model for use in the analysis of tibia fracture fixation plates. Material & Methods Mechanical testing of the tibia consisted of an offset 3-pt bend test with three repetitions of loading to 350N and return to 50N. Tri-axial stacked strain gauges were applied to the anterior and posterior surfaces of the bone and two rigid bodies – consisting of eight infrared active markers, were attached to the ends of the tibia. Positional measurements were taken with a FARO arm 3D digitiser. The FE model was constructed with both geometry and material properties derived from CT images of the bone. The elasticity-density relationship used for material property determination was validated separately using mechanical testing. This model was then transformed to the same coordinate system as the in vitro mechanical test and loads applied. Results Comparison between the mechanical testing and the FE model showed good correlation in surface strains (difference: anterior 2.3%, posterior 3.2%). Discussion & Conclusion This method of model creation provides a simple method for generating subject specific FE models from CT scans. The use of the CT data set for both the geometry and the material properties ensures a more accurate representation of the specific bone. This is reflected in the similarity of the surface strain results.
Resumo:
Most salad vegetables are eaten fresh by consumers. However, raw vegetables may pose a risk of transmitting opportunistic bacteria to immunocompromised people, including cystic fibrosis (CF) patients. In particular, CF patients are vulnerable to chronic Pseudomonas aeruginosa lung infections and this organism is the primary cause of morbidity and mortality in this group. Clonal variants of P. aeruginosa have been identified as emerging threats to people afflicted with CF; however it has not yet been proven from where these clones originate or how they are transmitted. Due to the organisms‟ aquatic environmental niche, it was hypothesised that vegetables may be a source of these clones. To test this hypothesis, lettuce, tomatoes, mushrooms and bean sprout packages (n = 150) were analysed from a green grocer, supermarket and farmers‟ market within the Brisbane region, availability permitting. The internal and external surfaces of the vegetables were separately analysed for the presence of clonal strains of P. aeruginosa using washings and homogenisation techniques, respectively. This separation was in an attempt to establish which surface was contaminated, so that recommendations could be made to decrease or eliminate P. aeruginosa from these foods prior to consumption. Soil and water samples (n = 17) from local farms were also analysed for the presence of P. aeruginosa. Presumptive identification of isolates recovered from these environmental samples was made based on growth on Cetrimide agar at 42°C, presence of the cytochrome-oxidase enzyme and inability to ferment lactose. P. aeruginosa duplex real-time polymerase chain reaction assay (PAduplex) was performed on all bacterial isolates presumptively identified as P. aeruginosa. Enterobacterial repetitive intergenic consensus strain typing PCR (ERIC-PCR) was subsequently performed on confirmed bacterial isolates. Although 72 P. aeruginosa were isolated, none of these proved to be clonal strains. The significance of these findings is that vegetables may pose a risk of transmitting sporadic strains of P. aeruginosa to people afflicted with CF and possibly, other immunocompromised people.
Resumo:
This paper presents a comparative study on the response of a buried tunnel to surface blast using the arbitrary Lagrangian-Eulerian (ALE) and smooth particle hydrodynamics (SPH) techniques. Since explosive tests with real physical models are extremely risky and expensive, the results of a centrifuge test were used to validate the numerical techniques. The numerical study shows that the ALE predictions were faster and closer to the experimental results than those from the SPH simulations which over predicted the strains. The findings of this research demonstrate the superiority of the ALE modelling techniques for the present study. They also provide a comprehensive understanding of the preferred ALE modelling techniques which can be used to investigate the surface blast response of underground tunnels.
Resumo:
Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections. For successful colonisation of the urinary tract, UPEC employ multiple surface-exposed or secreted virulence factors, including adhesins and iron uptake systems. Whilst individual UPEC strains and their virulence factors have been the focus of extensive research, there have been no outer membrane (OM) proteomic studies based on large clinical UPEC collections, primarily due to limitations of traditional methods. In this study, a high-throughput method based on tandem mass-spectrometry of EDTA heat-induced outer membrane vesicles (OMVs) was developed for the characterisation of the UPEC surface-associated proteome. The method was applied to compare the OM proteome of fifty-four UPEC isolates, resulting in the identification of 8789 proteins, consisting of 619 unique proteins, which were subsequently interrogated for their subcellular origin, prevalence and homology to characterised virulence factors. Multiple distinct virulence-associated proteins were identified, including two novel putative iron uptake proteins, an uncharacterised type of chaperone-usher fimbriae and various highly prevalent hypothetical proteins. Our results give fundamental insight into the physiology of UPEC and provide a framework for understanding the composition of the UPEC OM proteome.
Resumo:
Biomaterials play a fundamental role in disease management and the improvement of health care. In recent years, there has been a significant growth in the diversity, function, and number of biomaterials used worldwide. Yet, attachment of pathogenic microorganisms onto biomaterial surfaces remains a significant challenge that substantially undermines their clinical applicability, limiting the advancement of these systems. The emergence and escalating pervasiveness of antibiotic-resistant bacterial strains makes the management of biomaterial-associated nosocomial infections increasingly difficult. The conventional post-operative treatment of implant-caused infections using systemic antibiotics is often marginally effective, further accelerating the extent of antimicrobial resistance. Methods by which the initial stages of bacterial attachment and biofilm formation can be restricted or prevented are therefore sought. The surface modification of biomaterials has the potential to alleviate pathogenic biofouling, therefore preventing the need for conventional antibiotics to be applied.
Resumo:
-
Resumo:
This paper is concerned with the surface profiles of a strip after rigid bodies with serrated (saw-teeth) surfaces indent the strip and are subsequently removed. Plane-strain conditions are assumed. This has application in roughness transfer of final metal forming process. The effects of the semi-angle of the teeth, the depth of indentation and the friction on the contact surface on the profile are considered.