437 resultados para Statistical hypothesis testing.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most statistical methods use hypothesis testing. Analysis of variance, regression, discrete choice models, contingency tables, and other analysis methods commonly used in transportation research share hypothesis testing as the means of making inferences about the population of interest. Despite the fact that hypothesis testing has been a cornerstone of empirical research for many years, various aspects of hypothesis tests commonly are incorrectly applied, misinterpreted, and ignored—by novices and expert researchers alike. On initial glance, hypothesis testing appears straightforward: develop the null and alternative hypotheses, compute the test statistic to compare to a standard distribution, estimate the probability of rejecting the null hypothesis, and then make claims about the importance of the finding. This is an oversimplification of the process of hypothesis testing. Hypothesis testing as applied in empirical research is examined here. The reader is assumed to have a basic knowledge of the role of hypothesis testing in various statistical methods. Through the use of an example, the mechanics of hypothesis testing is first reviewed. Then, five precautions surrounding the use and interpretation of hypothesis tests are developed; examples of each are provided to demonstrate how errors are made, and solutions are identified so similar errors can be avoided. Remedies are provided for common errors, and conclusions are drawn on how to use the results of this paper to improve the conduct of empirical research in transportation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A satellite based observation system can continuously or repeatedly generate a user state vector time series that may contain useful information. One typical example is the collection of International GNSS Services (IGS) station daily and weekly combined solutions. Another example is the epoch-by-epoch kinematic position time series of a receiver derived by a GPS real time kinematic (RTK) technique. Although some multivariate analysis techniques have been adopted to assess the noise characteristics of multivariate state time series, statistic testings are limited to univariate time series. After review of frequently used hypotheses test statistics in univariate analysis of GNSS state time series, the paper presents a number of T-squared multivariate analysis statistics for use in the analysis of multivariate GNSS state time series. These T-squared test statistics have taken the correlation between coordinate components into account, which is neglected in univariate analysis. Numerical analysis was conducted with the multi-year time series of an IGS station to schematically demonstrate the results from the multivariate hypothesis testing in comparison with the univariate hypothesis testing results. The results have demonstrated that, in general, the testing for multivariate mean shifts and outliers tends to reject less data samples than the testing for univariate mean shifts and outliers under the same confidence level. It is noted that neither univariate nor multivariate data analysis methods are intended to replace physical analysis. Instead, these should be treated as complementary statistical methods for a prior or posteriori investigations. Physical analysis is necessary subsequently to refine and interpret the results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rising problems associated with construction such as decreasing quality and productivity, labour shortages, occupational safety, and inferior working conditions have opened the possibility of more revolutionary solutions within the industry. One prospective option is in the implementation of innovative technologies such as automation and robotics, which has the potential to improve the industry in terms of productivity, safety and quality. The construction work site could, theoretically, be contained in a safer environment, with more efficient execution of the work, greater consistency of the outcome and higher level of control over the production process. By identifying the barriers to construction automation and robotics implementation in construction, and investigating ways in which to overcome them, contributions could be made in terms of better understanding and facilitating, where relevant, greater use of these technologies in the construction industry so as to promote its efficiency. This research aims to ascertain and explain the barriers to construction automation and robotics implementation by exploring and establishing the relationship between characteristics of the construction industry and attributes of existing construction automation and robotics technologies to level of usage and implementation in three selected countries; Japan, Australia and Malaysia. These three countries were chosen as their construction industry characteristics provide contrast in terms of culture, gross domestic product, technology application, organisational structure and labour policies. This research uses a mixed method approach of gathering data, both quantitative and qualitative, by employing a questionnaire survey and an interview schedule; using a wide range of sample from management through to on-site users, working in a range of small (less than AUD0.2million) to large companies (more than AUD500million), and involved in a broad range of business types and construction sectors. Detailed quantitative (statistical) and qualitative (content) data analysis is performed to provide a set of descriptions, relationships, and differences. The statistical tests selected for use include cross-tabulations, bivariate and multivariate analysis for investigating possible relationships between variables; and Kruskal-Wallis and Mann Whitney U test of independent samples for hypothesis testing and inferring the research sample to the construction industry population. Findings and conclusions arising from the research work which include the ranking schemes produced for four key areas of, the construction attributes on level of usage; barrier variables; differing levels of usage between countries; and future trends, have established a number of potential areas that could impact the level of implementation both globally and for individual countries.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Analytical expressions are derived for the mean and variance, of estimates of the bispectrum of a real-time series assuming a cosinusoidal model. The effects of spectral leakage, inherent in discrete Fourier transform operation when the modes present in the signal have a nonintegral number of wavelengths in the record, are included in the analysis. A single phase-coupled triad of modes can cause the bispectrum to have a nonzero mean value over the entire region of computation owing to leakage. The variance of bispectral estimates in the presence of leakage has contributions from individual modes and from triads of phase-coupled modes. Time-domain windowing reduces the leakage. The theoretical expressions for the mean and variance of bispectral estimates are derived in terms of a function dependent on an arbitrary symmetric time-domain window applied to the record. the number of data, and the statistics of the phase coupling among triads of modes. The theoretical results are verified by numerical simulations for simple test cases and applied to laboratory data to examine phase coupling in a hypothesis testing framework

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dynamic capabilities view (DCV) focuses on renewal of firms’ strategic knowledge resources so as to sustain competitive advantage within turbulent markets. Within the context of the DCV, the focus of knowledge management (KM) is to develop the KMC through deploying knowledge governance mechanisms that are conducive to facilitating knowledge processes so as to produce superior business performance over time. The essence of KM performance evaluation is to assess how well the KMC is configured with knowledge governance mechanisms and processes that enable a firm to achieve superior performance through matching its knowledge base with market needs. However, little research has been undertaken to evaluate KM performance from the DCV perspective. This study employed a survey study design and adopted hypothesis-testing approaches to develop a capability-based KM evaluation framework (CKMEF) that upholds the basic assertions of the DCV. Under the governance of the framework, a KM index (KMI) and a KM maturity model (KMMM) were derived not only to indicate the extent to which a firm’s KM implementations fulfill its strategic objectives, and to identify the evolutionary phase of its KMC, but also to bench-mark the KMC in the research population. The research design ensured that the evaluation framework and instruments have statistical significance and good generalizabilty to be applied in the research population, namely construction firms operating in the dynamic Hong Kong construction market. The study demonstrated the feasibility of quantitatively evaluating the development of the KMC and revealing the performance heterogeneity associated with the development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the application of a statistical method for model structure selection of lift-drag and viscous damping components in ship manoeuvring models. The damping model is posed as a family of linear stochastic models, which is postulated based on previous work in the literature. Then a nested test of hypothesis problem is considered. The testing reduces to a recursive comparison of two competing models, for which optimal tests in the Neyman sense exist. The method yields a preferred model structure and its initial parameter estimates. Alternatively, the method can give a reduced set of likely models. Using simulated data we study how the selection method performs when there is both uncorrelated and correlated noise in the measurements. The first case is related to instrumentation noise, whereas the second case is related to spurious wave-induced motion often present during sea trials. We then consider the model structure selection of a modern high-speed trimaran ferry from full scale trial data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Integer ambiguity resolution is an indispensable procedure for all high precision GNSS applications. The correctness of the estimated integer ambiguities is the key to achieving highly reliable positioning, but the solution cannot be validated with classical hypothesis testing methods. The integer aperture estimation theory unifies all existing ambiguity validation tests and provides a new prospective to review existing methods, which enables us to have a better understanding on the ambiguity validation problem. This contribution analyses two simple but efficient ambiguity validation test methods, ratio test and difference test, from three aspects: acceptance region, probability basis and numerical results. The major contribution of this paper can be summarized as: (1) The ratio test acceptance region is overlap of ellipsoids while the difference test acceptance region is overlap of half-spaces. (2) The probability basis of these two popular tests is firstly analyzed. The difference test is an approximation to optimal integer aperture, while the ratio test follows an exponential relationship in probability. (3) The limitations of the two tests are firstly identified. The two tests may under-evaluate the failure risk if the model is not strong enough or the float ambiguities fall in particular region. (4) Extensive numerical results are used to compare the performance of these two tests. The simulation results show the ratio test outperforms the difference test in some models while difference test performs better in other models. Particularly in the medium baseline kinematic model, the difference tests outperforms the ratio test, the superiority is independent on frequency number, observation noise, satellite geometry, while it depends on success rate and failure rate tolerance. Smaller failure rate leads to larger performance discrepancy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new test of hypothesis for classifying stationary time series based on the bias-adjusted estimators of the fitted autoregressive model is proposed. It is shown theoretically that the proposed test has desirable properties. Simulation results show that when time series are short, the size and power estimates of the proposed test are reasonably good, and thus this test is reliable in discriminating between short-length time series. As the length of the time series increases, the performance of the proposed test improves, but the benefit of bias-adjustment reduces. The proposed hypothesis test is applied to two real data sets: the annual real GDP per capita of six European countries, and quarterly real GDP per capita of five European countries. The application results demonstrate that the proposed test displays reasonably good performance in classifying relatively short time series.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Crime analysts have traditionally received little guidance from academic researchers in key tasks in the analysis process, specifically the testing of multiple hypotheses and evaluating evidence in a scientific fashion. This article attempts to fill this gap by outlining a method (the Analysis of Competing Hypotheses) of systematically analysing multiple explanations for crime problems. The method is systematic, avoids many cognitive errors common in analysis, and is explicit. It is argued that the implementation of this approach makes analytic products audit-able, the reasoning underpinning them transparent, and provides intelligence managers a rational professional development tool for individual analysts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In previous research (Chung et al., 2009), the potential of the continuous risk profile (CRP) to proactively detect the systematic deterioration of freeway safety levels was presented. In this paper, this potential is investigated further, and an algorithm is proposed for proactively detecting sites where the collision rate is not sufficiently high to be classified as a high collision concentration location but where a systematic deterioration of safety level is observed. The approach proposed compares the weighted CRP across different years and uses the cumulative sum (CUSUM) algorithm to detect the sites where changes in collision rate are observed. The CRPs of the detected sites are then compared for reproducibility. When high reproducibility is observed, a growth factor is used for sequential hypothesis testing to determine if the collision profiles are increasing over time. Findings from applying the proposed method using empirical data are documented in the paper together with a detailed description of the method.