146 resultados para Soufrière Hills
Resumo:
The 20th May 2006 lava dome collapse of the Soufrière Hills Volcano, Montserrat, had a total non-dense rock equivalent (non-DRE) collapse volume of approximately 115 × 10 6 m 3. The majority of this volume was deposited into the ocean. The collapse was rapid, 85% of the mobilized volume being removed in just 35 min, giving peak pyroclastic flow flux of 66 × 10 3 m 3 s -1. Channel and levee facies on the submarine flanks of the volcano and formation of a thick, steep-sided ridge, suggest that the largest and most dense blocks were transported proximally as a high concentration granular flow. Of the submerged volume, 30% was deposited from the base of this granular flow, forming a linear, high-relief ridge that extends 7 km from shore. The remaining 70% of the submerged volume comprises the finer grain sizes, which were transported at least 40 km by turbidity currents on gradients of <2°. At several localities, the May 2006 distal turbidity currents ran up 200 m of topography and eroded up to 20 cm of underlying substrate. Multiple turbidites are preserved, representing current reflection from the graben margins and deflection around topography. The high energy of the May 2006 collapse resulted in longer submarine run out than the larger (210 × 10 6 m 3) Soufrière Hills dome collapse in July 2003.
Resumo:
This contribution provides an analysis of the 1995–2009 eruptive period of Soufrière Hills volcano (Montserrat) from a unique offshore perspective. The methodology is based on five repeated swath bathymetric surveys. The difference between the 2009 and 1999 bathymetry suggests that at least 395 Mm3 of material has entered the sea. This proximal deposit reaches 95 m thick and extends ∼7km from shore. However, the difference map does not include either the finer distal part of the submarine deposit or the submarine part of the delta close to the shoreline. We took both contributions into account by using additional information such as that from marine sediment cores. By March 2009, at least 65% of the material erupted throughout the eruption has been deposited into the sea. This work provides an excellent basis for assessing the future activity of the Soufrière Hills volcano (including potential collapse), and other volcanoes on small islands.
Resumo:
The 12 to 13 July 2003 andesite lava dome collapse at the Soufrière Hills volcano, Montserrat, provides the first opportunity to document comprehensively both the sub-aerial and submarine sequence of events for an eruption. Numerous pyroclastic flows entered the ocean during the collapse, depositing approximately 90% of the total material into the submarine environment. During peak collapse conditions, as the main flow penetrated the air–ocean interface, phreatic explosions were observed and a surge cloud decoupled from the main flow body to travel 2 to 3 km over the ocean surface before settling. The bulk of the flow was submerged and rapidly mixed with sea water forming a water-saturated mass flow. Efficient sorting and physical differentiation occurred within the flow before initial deposition at 500 m water depth. The coarsest components (∼60% of the total volume) were deposited proximally from a dense granular flow, while the finer components (∼40%) were efficiently elutriated into the overlying part of the flow, which evolved into a far-reaching turbidity current.
Resumo:
The Soufrière Hills volcano, Montserrat, West Indies, has undergone a series of dome growth and collapse events since the eruption began in 1995. Over 90% of the pyroclastic material produced has been deposited into the ocean. Sampling of these submarine deposits reveals that the pyroclastic flows mix rapidly and violently with the water as they enter the sea. The coarse components (pebbles to boulders) are deposited proximally from dense basal slurries to form steep-sided, near-linear ridges that intercalate to form a submarine fan. The finer ash-grade components are mixed into the overlying water column to form turbidity currents that flow over distances >30 km from the source. The total volume of pyroclastic material off the east coast of Montserrat exceeds 280 × 106 m3, with 65% deposited in proximal lobes and 35% deposited as distal turbidites.
Resumo:
This contribution describes two mass movement deposits (total volume ~0.5 km3) identified in seven marine cores located 8 to 15 km offshore southern Montserrat, West Indies. The deposits were emplaced in the last 35 ka and have not previously been recognised in either the subaerial or distal submarine records. Age constraints, provided by radiocarbon dating, show that an explosive volcanic eruption occurred at ca 8–12 ka, emplacing a primary eruption-related deposit that overlies a large (~0.3 km3) reworked bioclastic and volcaniclastic flow deposit, formed from a shelf collapse between 8 and 35 ka. The origin of these deposits has been deduced through the correlation of marine sediment cores, component analysis and geochemical analysis. The 8–12 ka primary volcanic deposit was likely derived from a highly-erosive pyroclastic flow from the Soufrière Hills volcano that entered the ocean and mixed with the water column forming a water-supported density current. Previous investigations of the eruption record suggested that there was a hiatus in activity at the Soufrière Hills volcano between 16 and 6 ka. The ca 8–12 ka eruptive episode identified here shows that this hiatus was shorter than previously hypothesised, and thus highlights the importance of obtaining an accurate and completemarine record of events offshore from volcanic islands and incorporating such data into eruption history reconstructions. Comparisons with the submarine deposit characteristics of the 2003 dome collapse also suggests that the ~8–12 ka eruptive episode was more explosive than eruptions from the current eruptive episode.
Resumo:
We present new evidence for sector collapses of the South Soufrière Hills (SSH) edifice, Montserrat during the mid-Pleistocene. High-resolution geophysical data provide evidence for sector collapse, producing an approximately 1 km3 submarine collapse deposit to the south of SSH. Sedimentological and geochemical analyses of submarine deposits sampled by sediment cores suggest that they were formed by large multi-stage flank failures of the subaerial SSH edifice into the sea. This work identifies two distinct geochemical suites within the SSH succession on the basis of trace-element and Pb-isotope compositions. Volcaniclastic turbidites in the cores preserve these chemically heterogeneous rock suites. However, the subaerial chemostratigraphy is reversed within the submarine sediment cores. Sedimentological analysis suggests that the edifice failures produced high-concentration turbidites and that the collapses occurred in multiple stages, with an interval of at least 2 ka between the first and second failure. Detailed field and petrographical observations, coupled with SEM image analysis, shows that the SSH volcanic products preserve a complex record of magmatic activity. This activity consisted of episodic explosive eruptions of andesitic pumice, probably triggered by mafic magmatic pulses and followed by eruptions of poorly vesiculated basaltic scoria, and basaltic lava flows.
Resumo:
Soufrière Hills volcano, Montserrat, has been erupting since 1995. During the current eruption, a large part of the material produced by the volcano has been transported into the sea, modifying the morphology of the submarine flanks of the volcano. We present a unique set of swath bathymetric data collected offshore from Montserrat in 1999, 2002 and 2005. From 1999 to 2002, pyroclastic flows associated with numerous dome collapses entered the sea to produce 100 Mm3 deposit. From 2002 to 2005, the 290 Mm3 submarine deposit is mainly from the 12–13 July 2003 collapse. These data allow us to estimate that, by May 2005, at least 482 Mm3 of material had been deposited on the sea floor since 1995. We compare on-land characteristics and volumes of dome collapse events with the submarine deposits and propose a new analysis of their emplacement on the submarine flanks of the volcano. The deposition mechanism shows a slope dependence, with the maximum thickness of deposit before the break in the slope, probably because of the type of the dense granular flow involved. We conclude that from 1995 to 2005 more than 75% of the erupted volume entered the sea.
Resumo:
The volcanic succession on Montserrat provides an opportunity to examine the magmatic evolution of island arc volcanism over a ∼2.5 Ma period, extending from the andesites of the Silver Hills center, to the currently active Soufrière Hills volcano (February 2010). Here we present high-precision double-spike Pb isotope data, combined with trace element and Sr-Nd isotope data throughout this period of Montserrat's volcanic evolution. We demonstrate that each volcanic center; South Soufrière Hills, Soufrière Hills, Centre Hills and Silver Hills, can be clearly discriminated using trace element and isotopic parameters. Variations in these parameters suggest there have been systematic and episodic changes in the subduction input. The SSH center, in particular, has a greater slab fluid signature, as indicated by low Ce/Pb, but less sediment addition than the other volcanic centers, which have higher Th/Ce. Pb isotope data from Montserrat fall along two trends, the Silver Hills, Centre Hills and Soufrière Hills lie on a general trend of the Lesser Antilles volcanics, whereas SSH volcanics define a separate trend. The Soufrière Hills and SSH volcanic centers were erupted at approximately the same time, but retain distinctive isotopic signatures, suggesting that the SSH magmas have a different source to the other volcanic centers. We hypothesize that this rapid magmatic source change is controlled by the regional transtensional regime, which allowed the SSH magma to be extracted from a shallower source. The Pb isotopes indicate an interplay between subduction derived components and a MORB-like mantle wedge influenced by a Galapagos plume-like source.
Resumo:
The recent history of the Soufrière Hills Volcano, Montserrat, Lesser Antilles volcanic arc, is reconstructed using data obtained from recently drilled submarine cores.Tephra layers in these cores preserve a record of the volcanic history of Montserrat back to ~250 ka on the basis of micropaleontology and stable isotope stratigraphy. Stratigraphic relationships identified in the cores collected in 2002 and 2005 document the fate of both pyroclastic flows entering the ocean to the east of Montserrat and carbonate-rich turbidites sourced from the carbonate platformssurrounding the islands of the Lesser Antilles. Using oxygen isotope stratigraphy, micropalaeontological analysis and Carbon-14 dating, it can be shown that three significant volcanic events, including the on-going eruption, have occurred over the last 12 ka. Preceding this was a time of volcanic quiescence, with three carbonate-rich turbidite events being documented in many of the cores. Our data suggest that these events occurred during Marine Isotope Stage 2, following the Last Glacial Maximum (LGM) and onset of post-glacial sea level rise.
Resumo:
During the current (1995-present) eruptive phase of the Soufrière Hills volcano on Montserrat, voluminous pyroclastic flows entered the sea off the eastern flank of the island, resulting in the deposition of well-defined submarine pyroclastic lobes. Previously reported bathymetric surveys documented the sequential construction of these deposits, but could not image their internal structure, the morphology or extent of their base, or interaction with the underlying sediments. We show, by combining these bathymetric data with new high-resolution three dimensional (3D) seismic data, that the sequence of previously detected pyroclastic deposits from different phases of the ongoing eruptive activity is still well preserved. A detailed interpretation of the 3D seismic data reveals the absence of significant (> 3. m) basal erosion in the distal extent of submarine pyroclastic deposits. We also identify a previously unrecognized seismic unit directly beneath the stack of recent lobes. We propose three hypotheses for the origin of this seismic unit, but prefer an interpretation that the deposit is the result of the subaerial flank collapse that formed the English's Crater scarp on the Soufrière Hills volcano. The 1995-recent volcanic activity on Montserrat accounts for a significant portion of the sediments on the southeast slope of Montserrat, in places forming deposits that are more than 60. m thick, which implies that the potential for pyroclastic flows to build volcanic island edifices is significant.
Resumo:
Since 1995 the eruption of the andesitic Soufrière Hills Volcano (SHV), Montserrat, has been studied in substantial detail. As an important contribution to this effort, the Seismic Experiment with Airgunsource-Caribbean Andesitic Lava Island Precision Seismo-geodetic Observatory (SEA-CALIPSO) experiment was devised to image the arc crust underlying Montserrat, and, if possible, the magma system at SHV using tomography and reflection seismology. Field operations were carried out in October–December 2007, with deployment of 238 seismometers on land supplementing seven volcano observatory stations, and with an array of 10 ocean-bottom seismometers deployed offshore. The RRS James Cook on NERC cruise JC19 towed a tuned airgun array plus a digital 48-channel streamer on encircling and radial tracks for 77 h about Montserrat during December 2007, firing 4414 airgun shots and yielding about 47 Gb of data. The main objecctives of the experiment were achieved. Preliminary analyses of these data published in 2010 generated images of heterogeneous high-velocity bodies representing the cores of volcanoes and subjacent intrusions, and shallow areas of low velocity on the flanks of the island that reflect volcaniclastic deposits and hydrothermal alteration. The resolution of this preliminary work did not extend beyond 5 km depth. An improved three-dimensional (3D) seismic velocity model was then obtained by inversion of 181 665 first-arrival travel times from a more-complete sampling of the dataset, yielding clear images to 7.5 km depth of a low-velocity volume that was interpreted as the magma chamber which feeds the current eruption, with an estimated volume 13 km3. Coupled thermal and seismic modelling revealed properties of the partly crystallized magma. Seismic reflection analyses aimed at imaging structures under southern Montserrat had limited success, and suggest subhorizontal layering interpreted as sills at a depth of between 6 and 19 km. Seismic reflection profiles collected offshore reveal deep fans of volcaniclastic debris and fault offsets, leading to new tectonic interpretations. This chapter presents the project goals and planning concepts, describes in detail the campaigns at sea and on land, summarizes the major results, and identifies the key lessons learned.