149 resultados para Socio-demographic factors
Resumo:
Background Poor mental health is a significant cause of morbidity and mortality, yet debate continues about factors most likely to predict poor mental health outcomes. Objective This cohort study examines the influence of modifiable lifestyle factors, menopausal symptoms, and physical health on the mental health of midlife and older Australian women. Methods: Random sampling was used to recruit women aged 40-55, from rural and urban areas of Queensland, Australia. Overall, 340 women completed mailed surveys on socio-demographic characteristics, midlife symptoms (Greene Climacteric Scale©), modifiable lifestyle factors, and mental health (SF-12©) in 2001, 2004 and 2011. Hierarchical repeated-measure models were used to explore the correlates of poor mental health over time. Results The mean age [SD] at baseline was 55 [2.7] years, most were married (73%, n=248) and 18% were pre-menopausal. The model suggested that variance in mental health widened and showed a non-linear increase with age. Decrements in mental health were associated with an increase in midlife symptoms (Greene psychological scale, P <0.01; Greene somatic scale, P <0.05), time (P <0.01), poor physical health (P <0.01) and individual variance (P <0.01). Socio-demographics and lifestyle factors had little influence on mental health over time. Conclusion Findings suggest that while women’s mental health may decline during midlife, the effect is temporary; in older women, physical health and individual factors seem to be increasingly significant. This research highlights the importance of active health promotion as a means of enhancing both physical and mental health in midlife women.
Resumo:
Background: The seasonality of suicide has long been recognised. However, little is known about the relative importance of socio-environmental factors in the occurrence of suicide in different geographical areas. This study examined the association of climate, socioeconomic and demographic factors with suicide in Queensland, Australia, using a spatiotemporal approach. Methods: Seasonal data on suicide, demographic variables and socioeconomic indexes for areas in each Local Government Area (LGA) between 1999 and 2003 were acquired from the Australian Bureau of Statistics. Climate data were supplied by the Australian Bureau of Meteorology. A multivariable generalized estimating equation model was used to examine the impact of socio-environmental factors on suicide. Results: The preliminary data analyses show that far north Queensland had the highest suicide incidence (e.g., Cook and Mornington Shires), while the south-western areas had the lowest incidence (e.g., Barcoo and Bauhinia Shires) in all the seasons. Maximum temperature, unemployment rate, the proportion of Indigenous population and the proportion of population with low individual income were statistically significantly and positively associated with suicide. There were weaker but not significant associations for other variables. Conclusions: Maximum temperature, the proportion of Indigenous population and unemployment rate appeared to be major determinants of suicide at a LGA level in Queensland.
Resumo:
Overweight and obesity are two of the most important emerging public health issues in our time and regarded by the World Health Organisation [WHO] (1998) as a worldwide epidemic. The prevalence of obesity in the USA is the highest in the world, and Australian obesity rates fall into second place. Currently, about 60% of Australian adults are overweight (BMI „d 25kg/m2). The socio-demographic factors associated with overweight and/or obesity have been well demonstrated, but many of the existing studies only examined these relationships at one point of time, and did not examine whether significant relationships changed over time. Furthermore, only limited previous research has examined the issue of the relationship between perception of weight status and actual weight status, as well as factors that may impact on people¡¦s perception of their body weight status. Aims: The aims of the proposed research are to analyse the discrepancy between perceptions of weight status and actual weight status in Australian adults; to examine if there are trends in perceptions of weight status in adults between 1995 to 2004/5; and to propose a range of health promotion strategies and furth er research that may be useful in managing physical activity, healthy diet, and weight reduction. Hypotheses: Four alternate hypotheses are examined by the research: (1) there are associations between independent variables (e.g. socio -demographic factors, physical activity and dietary habits) and overweight and/or obesity; (2) there are associations between the same independent variables and the perception of overweight; (3) there are associations between the same independent variables and the discrepancy between weight status and perception of weight status; and (4) there are trends in overweight and/or obesity, perception of overweight, and the discrepancy in Australian adults from 1995 to 2004/5. Conceptual Framework and Methods: A conceptual framework is developed that shows the associations identified among socio -demographic factors, physical activity and dietary habits with actual weight status, as well as examining perception of weight status. The three latest National Health Survey data bases (1995 , 2001 and 2004/5) were used as the primary data sources. A total of 74,114 Australian adults aged 20 years and over were recruited from these databases. Descriptive statistics, bivariate analyses (One -Way ANOVA tests, unpaired t-tests and Pearson chi-square tests), and multinomial logistic regression modelling were used to analyse the data. Findings: This research reveals that gender, main language spoken at home, occupation status, household structure, private health insurance status, and exercise are related to the discrepancy between actual weight status and perception of weight status, but only gender and exercise are related to the discrepancy across the three time point s. The current research provides more knowledge about perception of weight status independently. Factors which affect perception of overweight are gender, age, language spoken at home, private health insurance status, and diet ary habits. The study also finds that many factors that impact overweight and/or obesity also have an effect on perception of overweight, such as age, language spoken at home, household structure, and exercise. However, some factors (i.e. private health insurance status and milk consumption) only impact on perception of overweight. Furthermore, factors that are rel ated to people’s overweight are not totally related to people’s underestimation of their body weight status in the study results. Thus, there are unknown factors which can affect people’s underestimation of their body weight status. Conclusions: Health promotion and education activities should provide education about population health education and promotion and education for particular at risk sub -groups. Further research should take the form of a longitudinal study design ed to examine the causal relationship between overweight and/or obesity and underestimation of body weight status, it should also place more attention on the relationships between overweight and/or obesity and dietary habits, with a more comprehensive representation of SES. Moreover, further research that deals with identification of characteristics about perception of weight status, in particular the underestimation of body weight status should be undertaken.
Resumo:
Suicide has drawn much attention from both the scientific community and the public. Examining the impact of socio-environmental factors on suicide is essential in developing suicide prevention strategies and interventions, because it will provide health authorities with important information for their decision-making. However, previous studies did not examine the impact of socio-environmental factors on suicide using a spatial analysis approach. The purpose of this study was to identify the patterns of suicide and to examine how socio-environmental factors impact on suicide over time and space at the Local Governmental Area (LGA) level in Queensland. The suicide data between 1999 and 2003 were collected from the Australian Bureau of Statistics (ABS). Socio-environmental variables at the LGA level included climate (rainfall, maximum and minimum temperature), Socioeconomic Indexes for Areas (SEIFA) and demographic variables (proportion of Indigenous population, unemployment rate, proportion of population with low income and low education level). Climate data were obtained from Australian Bureau of Meteorology. SEIFA and demographic variables were acquired from ABS. A series of statistical and geographical information system (GIS) approaches were applied in the analysis. This study included two stages. The first stage used average annual data to view the spatial pattern of suicide and to examine the association between socio-environmental factors and suicide over space. The second stage examined the spatiotemporal pattern of suicide and assessed the socio-environmental determinants of suicide, using more detailed seasonal data. In this research, 2,445 suicide cases were included, with 1,957 males (80.0%) and 488 females (20.0%). In the first stage, we examined the spatial pattern and the determinants of suicide using 5-year aggregated data. Spearman correlations were used to assess associations between variables. Then a Poisson regression model was applied in the multivariable analysis, as the occurrence of suicide is a small probability event and this model fitted the data quite well. Suicide mortality varied across LGAs and was associated with a range of socio-environmental factors. The multivariable analysis showed that maximum temperature was significantly and positively associated with male suicide (relative risk [RR] = 1.03, 95% CI: 1.00 to 1.07). Higher proportion of Indigenous population was accompanied with more suicide in male population (male: RR = 1.02, 95% CI: 1.01 to 1.03). There was a positive association between unemployment rate and suicide in both genders (male: RR = 1.04, 95% CI: 1.02 to 1.06; female: RR = 1.07, 95% CI: 1.00 to 1.16). No significant association was observed for rainfall, minimum temperature, SEIFA, proportion of population with low individual income and low educational attainment. In the second stage of this study, we undertook a preliminary spatiotemporal analysis of suicide using seasonal data. Firstly, we assessed the interrelations between variables. Secondly, a generalised estimating equations (GEE) model was used to examine the socio-environmental impact on suicide over time and space, as this model is well suited to analyze repeated longitudinal data (e.g., seasonal suicide mortality in a certain LGA) and it fitted the data better than other models (e.g., Poisson model). The suicide pattern varied with season and LGA. The north of Queensland had the highest suicide mortality rate in all the seasons, while there was no suicide case occurred in the southwest. Northwest had consistently higher suicide mortality in spring, autumn and winter. In other areas, suicide mortality varied between seasons. This analysis showed that maximum temperature was positively associated with suicide among male population (RR = 1.24, 95% CI: 1.04 to 1.47) and total population (RR = 1.15, 95% CI: 1.00 to 1.32). Higher proportion of Indigenous population was accompanied with more suicide among total population (RR = 1.16, 95% CI: 1.13 to 1.19) and by gender (male: RR = 1.07, 95% CI: 1.01 to 1.13; female: RR = 1.23, 95% CI: 1.03 to 1.48). Unemployment rate was positively associated with total (RR = 1.40, 95% CI: 1.24 to 1.59) and female (RR=1.09, 95% CI: 1.01 to 1.18) suicide. There was also a positive association between proportion of population with low individual income and suicide in total (RR = 1.28, 95% CI: 1.10 to 1.48) and male (RR = 1.45, 95% CI: 1.23 to 1.72) population. Rainfall was only positively associated with suicide in total population (RR = 1.11, 95% CI: 1.04 to 1.19). There was no significant association for rainfall, minimum temperature, SEIFA, proportion of population with low educational attainment. The second stage is the extension of the first stage. Different spatial scales of dataset were used between the two stages (i.e., mean yearly data in the first stage, and seasonal data in the second stage), but the results are generally consistent with each other. Compared with other studies, this research explored the variety of the impact of a wide range of socio-environmental factors on suicide in different geographical units. Maximum temperature, proportion of Indigenous population, unemployment rate and proportion of population with low individual income were among the major determinants of suicide in Queensland. However, the influence from other factors (e.g. socio-culture background, alcohol and drug use) influencing suicide cannot be ignored. An in-depth understanding of these factors is vital in planning and implementing suicide prevention strategies. Five recommendations for future research are derived from this study: (1) It is vital to acquire detailed personal information on each suicide case and relevant information among the population in assessing the key socio-environmental determinants of suicide; (2) Bayesian model could be applied to compare mortality rates and their socio-environmental determinants across LGAs in future research; (3) In the LGAs with warm weather, high proportion of Indigenous population and/or unemployment rate, concerted efforts need to be made to control and prevent suicide and other mental health problems; (4) The current surveillance, forecasting and early warning system needs to be strengthened, to trace the climate and socioeconomic change over time and space and its impact on population health; (5) It is necessary to evaluate and improve the facilities of mental health care, psychological consultation, suicide prevention and control programs; especially in the areas with low socio-economic status, high unemployment rate, extreme weather events and natural disasters.
Resumo:
Despite a wide variation in access to goods and services between rural areas, common policy interventions are often proposed in Northern Ireland. Questions remain as to the level and form of policy differentiation that is required, if any, both within and between different rural areas. This issue is investigated in this paper through the analysis of activity-travel patterns of individuals living in two rural areas with different levels of area accessibility and area mobility. Three focus groups, 299 questionnaires and 89 activity-travel diaries for 7 days were collected for individuals from these areas. Regression analyses were employed to explore the degree to which different factors influence activity travel behaviour. The results indicate that individuals from rural areas with a higher level of accessibility are more integrated within their local community and as a result, are potentially less at risk of being excluded from society due to immobility. Differences, however, were also found between different groups within an area (e.g. non-car owning individuals who were more reliant on walking, and low-income individuals who made trips of a shorter distance). Based on the study findings and a review of existing policies, this research highlights the need to tailor policy responses to reflect the particular sets of circumstances exhibited in different areas.
Resumo:
Background: A number of studies have examined the relationship between high ambient temperature and mortality. Recently, concern has arisen about whether this relationship is modified by socio-demographic factors. However, data for this type of study is relatively scarce in subtropical/tropical regions where people are well accustomed to warm temperatures. Objective: To investigate whether the relationship between daily mean temperature and daily all-cause mortality is modified by age, gender and socio-economic status (SES) in Brisbane, Australia. Methods: We obtained daily mean temperature and all-cause mortality data for Brisbane, Australia during 1996–2004. A generalised additive model was fitted to assess the percentage increase in all deaths with every one degree increment above the threshold temperature. Different age, gender and SES groups were included in the model as categorical variables and their modification effects were estimated separately. Results: A total of 53,316 non-external deaths were included during the study period. There was a clear increasing trend in the harmful effect of high temperature on mortality with age. The effect estimate among women was more than 20 times that among men. We did not find an SES effect on the percent increase associated with temperature. Conclusions: The effects of high temperature on all deaths were modified by age and gender but not by SES in Brisbane, Australia.
Resumo:
Despite substantial investment by governments in social marketing campaigns and the introduction of various legislative and supply controls on alcohol, the binge drinking phenomenon amongst young people continues unabated in many countries and appears to be spreading to others. This paper examines drinking behaviour amongst university students from 50 countries across Europe, North America and the Asia Pacific region and argues that more needs to be done in understanding socio-cultural factors. To date, little is known of the specific socio-cultural factors that are common in countries that have high drinking behaviour compared to countries that have moderate bingedrinking behaviour. Using a marketing systems approach, this exploratory study identifies two key themes that distinguish these countries, namely family influences and peer influences.
Resumo:
Aims and Objectives To examine relationships between socio-demographic factors and job satisfaction and to identify if these factors predict job satisfaction levels in an Australian registered nurses. Background Reports indicate that in Australia there are 30,000 qualified nurses no longer working in the healthcare and that current nursing shortages vary as a result of certain socio-demographic variables including type of nurse, geographic, location, sector, service and organisation. Furthermore it has been revealed that there is not only a real shortage but also a pseudo-shortage (i.e. either there are not enough nurses are available, or not enough are willing to work under existing workplace conditions). International studies have found significant relationships exist between some socio-demographic factors and job satisfaction in registered nurses however there is limited information available on relationships between socio-demographic factors and job satisfaction in nurses in the Australian context. Design A cross sectional survey was undertaken of Australian registered nurses. Methods Two thousand Australian registered nurses who were members of an industrial and professional organisation were sent the questionnaire in 2008. They were stratified and randomised according to gender. Six hundred and thirty-nine registered nurses responded. Descriptive analyses, correlation analyses, one- way ANOVA tests, simple linear regression and multivariable analyses were conducted to examine further if any relationships existed between the variables. Results The majority of respondents showed positive job satisfaction scores. An ANOVA found significant positive relationships existed between job satisfaction, specialty area, health sector and Australian states. Multivariable analyses found relationships existed between specialty area, health sector, and job satisfaction. Conclusions The variables specialty area and health sector were found to be significantly associated with job satisfaction. The different specialty areas and health sectors in relation to job satisfaction should be investigated further. Clinical Relevance The study results have provided new knowledge for policy makers, organisational and nursing leaders of the socio-demographic variables that may affect job satisfaction in registered nurses in the Australian context.
Resumo:
Aim Worldwide obesity levels have increased unprecedentedly over the past couple of decades. Although the prevalence, trends and associated socio-economic factors of the condition have been extensively reported in Western populations, less is known regarding South Asian populations. Methods A review of articles using Medline with combinations of the MeSH terms: 'Obesity', 'Overweight' and 'Abdominal Obesity' limiting to epidemiology and South Asian countries. Results Despite methodological heterogeneity and variation according to country, area of residence and gender , the most recent nationally representative and large regional data demonstrates that without any doubt there is a epidemic of obesity, overweight and abdominal obesity in South Asian countries. Prevalence estimates of overweight and obesity (based on Asian cut-offs: overweight ≥ 23 kg/m(2), obesity ≥ 25 kg/m(2)) ranged from 3.5% in rural Bangladesh to over 65% in the Maldives. Abdominal obesity was more prevalent than general obesity in both sexes in this ethnic group. Countries with the lowest prevalence had the highest upward trend of obesity. Socio-economic factors associated with greater obesity in the region included female gender, middle age, urban residence, higher educational and economic status. Conclusion South Asia is significantly affected by the obesity epidemic. Collaborative public health interventions to reverse these trends need to be mindful of many socio-economic constraints in order to provide long-term solutions.
Resumo:
BACKGROUND Pandemic influenza A (H1N1) has a significant public health impact. This study aimed to examine the effect of socio-ecological factors on the transmission of H1N1 in Brisbane, Australia. METHODOLOGY We obtained data from Queensland Health on numbers of laboratory-confirmed daily H1N1 in Brisbane by statistical local areas (SLA) in 2009. Data on weather and socio-economic index were obtained from the Australian Bureau of Meteorology and the Australian Bureau of Statistics, respectively. A Bayesian spatial conditional autoregressive (CAR) model was used to quantify the relationship between variation of H1N1 and independent factors and to determine its spatiotemporal patterns. RESULTS Our results show that average increase in weekly H1N1 cases were 45.04% (95% credible interval (CrI): 42.63-47.43%) and 23.20% (95% CrI: 16.10-32.67%), for a 1 °C decrease in average weekly maximum temperature at a lag of one week and a 10mm decrease in average weekly rainfall at a lag of one week, respectively. An interactive effect between temperature and rainfall on H1N1 incidence was found (changes: 0.71%; 95% CrI: 0.48-0.98%). The auto-regression term was significantly associated with H1N1 transmission (changes: 2.5%; 95% CrI: 1.39-3.72). No significant association between socio-economic indexes for areas (SEIFA) and H1N1 was observed at SLA level. CONCLUSIONS Our results demonstrate that average weekly temperature at lag of one week and rainfall at lag of one week were substantially associated with H1N1 incidence at a SLA level. The ecological factors seemed to have played an important role in H1N1 transmission cycles in Brisbane, Australia.
Resumo:
Objective: Examining the association between socioeconomic disadvantage and heat-related emergency department (ED) visits during heatwave periods in Brisbane, 2000–2008. Methods: Data from 10 public EDs were analysed using a generalised additive model for disease categories, age groups and gender. Results: Cumulative relative risks (RR) for non-external causes other than cardiovascular and respiratory diseases were 1.11 and 1.05 in most and least disadvantaged areas, respectively. The pattern persisted on lags 0–2. Elevated risks were observed for all age groups above 15 years in all areas. However, with RRs of 1.19–1.28, the 65–74 years age group in more disadvantaged areas stood out, compared with RR=1.08 in less disadvantaged areas. This pattern was observed on lag 0 but did not persist. The RRs for male presentations were 1.10 and 1.04 in most and less disadvantaged areas; for females, RR was 1.04 in less disadvantaged areas. This pattern persisted across lags 0–2. Conclusions: Heat-related ED visits increased during heatwaves. However, due to overlapping confidence intervals, variations across socioeconomic areas should be interpreted cautiously. Implications: ED data may be utilised for monitoring heat-related health impacts, particularly on the first day of heatwaves, to facilitate prompt interventions and targeted resource allocation.