64 resultados para Semi-transparent
Resumo:
An interactive installation with full body interface, digital projection, multi-touch sensitive screen surfaces, interactive 3D gaming software, motorised dioramas, 4.1 spatial sound & new furniture forms - investigating the cultural dimensions of sustainability through the lens of 'time'. “Time is change, time is finitude. Humans are a finite species. Every decision we make today brings that end closer, or alternatively pushes it further away. Nothing can be neutral”. Tony Fry DETAILS: Finitude (Mallee:Time) is a major new media/sculptural hybrid work premiered in 2011 in version 1 at the Ka-rama Motel for the Mildura Palimpsest #8 ('Collaborators and Saboteurs'). Each participant/viewer lies comfortably on their back on the double bed of Room 22. Directly above them, supported by a wooden structure, not unlike a house frame, is a semi-transparent Perspex screen that displays projected 3D imagery and is simultaneously sensitive to the lightest of finger touches. Depending upon the ever changing qualities of the projected image on this screen the participant can see through its surface to a series of physical dioramas suspended above, lit by subtle LED spotlighting. This diorama consists of a slowly rotating series of physical environments, which also include several animatronic components, allowing the realtime composition of whimsical ‘landscapes’ of both 'real' and 'virtual' media. Through subtle, non-didactic touch-sensitive interactivity the participant then has influence over both the 3D graphic imagery, the physical movements of the diorama and the 4.1 immersive soundscape, creating an uncanny blend of physical and virtual media. Five speakers positioned around the room deliver a rich interactive soundscape that responds both audibly and physically to interactions. VERSION 1, CONTEXT/THEORY: Finitude (Mallee: Time) is Version 1 of a series of presentations during 2012-14. This version has been inspired through a series of recent visits and residencies in the SW Victoria Mallee country. Further drawing on recent writings by post colonial author Paul Carter, the work is envisaged as an evolving ‘personal topography’ of place-discovery. By contrasting and melding readily available generalisations of the Mallee regions’ rational surfaces, climatic maps and ecological systems with what Carter calls “a fine capillary system of interconnected words, places, memories and sensations” generated through my own idiosyncratic research processes, Finitude (Mallee Time) invokes a “dark writing” of place through outside eyes - an approach that avoids concentration upon what 'everyone else knows', to instead imagine and develop a sense how things might be. This basis in re-imagining and re-invention becomes the vehicle for the work’s more fundamental intention - as a meditative re-imagination of 'time' (and region) as finite resources: Towards this end, every object, process and idea in the work is re-thought as having its own ‘time component’ or ‘residue’ that becomes deposited into our 'collective future'. Thought this way Finitude (Mallee Time) suggests the poverty of predominant images of time as ‘mechanism’ to instead envisage time as a plastic cyclical medium that we can each choose to ‘give to’ or ‘take away from’ our future. Put another way - time has become finitude.
Resumo:
WHAT: An interactive installation with full body interface, digital projection, multi-touch sensitive screen surfaces, interactive 3D gaming software, motorised dioramas, 4.1 spatial sound & new furniture forms - investigating the cultural dimensions of sustainability through the lens of 'time'. “Time is change, time is finitude. Humans are a finite species. Every decision we make today brings that end closer, or alternatively pushes it further away. Nothing can be neutral”. Tony Fry DETAILS: Each participant/viewer lies comfortably on their back. Directly above them is a semi-transparent Perspex screen that displays projected 3D imagery and is simultaneously sensitive to the lightest of finger touches. Depending upon the ever changing qualities of the projected image on this screen the participant can see through its surface to a series of physical dioramas suspended above, lit by subtle LED spotlighting. This diorama consists of a slowly rotating series of physical environments, which also include several animatronic components, allowing the realtime composition of whimsical ‘landscapes’ of both 'real' and 'virtual' media. Through subtle, non-didactic touch-sensitive interactivity the participant then has influence over both the 3D graphic imagery, the physical movements of the diorama and the 4 channel immersive soundscape, creating an uncanny blend of physical and virtual media. Five speakers positioned around the room deliver a rich interactive soundscape that responds both audibly and physically to interactions.
Resumo:
Light-emitting field effect transistors (LEFETs) are an emerging class of multifunctional optoelectronic devices. It combines the light emitting function of an OLED with the switching function of a transistor in a single device architecture the dual functionality of LEFETs has the potential applications in active matrix displays. However, the key problem of existing LEFETs thus far has been their low EQEs at high brightness, poor ON/OFF and poorly defined light emitting area-a thin emissive zone at the edge of the electrodes. Here we report heterostructure LEFETs based on solution processed unipolar charge transport and an emissive polymer that have an EQE of up to 1% at a brightness of 1350a €...cd/m 2, ON/OFF ratio > 10 4 and a well-defined light emitting zone suitable for display pixel design. We show that a non-planar hole-injecting electrode combined with a semi-transparent electron-injecting electrode enables to achieve high EQE at high brightness and high ON/OFF ratio. Furthermore, we demonstrate that heterostructure LEFETs have a better frequency response (f cut-off = 2.6a €...kHz) compared to single layer LEFETs the results presented here therefore are a major step along the pathway towards the realization of LEFETs for display applications.
Resumo:
Description of the work Shrinking Violets is comprised of two half scale garments in laser cut silk organza, developed with a knotting device to allow for disassembly and reassembly. The first is a jacket in layered red organza including black storm flap details. The second is a vest in jade organza with circles of pink organza attached through a pattern of knots. Research Background This practice-led fashion design research sits within the field of Design for Sustainability (DfS) in fashion that seeks to mitigate the environmental and ethical impacts of fashion consumption and production. The research explores new systems of garment construction for DfS, and examines how these systems may involve ‘designing’ new user interactions with the garments. The garments’ construction system allows them to be disassembled and recycled or reassembled by users to form a new garment. Conventional garment design follows a set process of cutting and construction, with pattern pieces permanently machine-stitched together. Garments typically contain multiple fibre types; for example a jacket may be constructed from a shell of wool/polyester, an acetate lining, fusible interlinings, and plastic buttons. These complex inputs mean that textile recycling is highly labour intensive, first to separate the garment pieces and second to sort the multiple fibre types. This difficulty results in poor quality ‘shoddy’ comprised of many fibre types and unsuitable for new apparel, or in large quantities of recyclable textile waste sent to landfill (Hawley 2011). Design-led approaches that consider the garment’s end of life in the design process are a way of addressing this problem. In Gulich’s (2006) analysis, use of single materials is the most effective way to ensure ease of recycling, with multiple materials that can be detached next in effectiveness. Given the low rate of technological innovation in most apparel manufacturing (Ruiz 2011), a challenge for effective recycling is how to develop new manufacturing methods that allow for garments to be more easily disassembled at end-of-life. Research Contribution This project addresses the research question: How can design for disassembly be considered within the fashion design process? I have employed a practice-led methodology in which my design process leads the research, making use of methods of fashion design practice including garment and construction research, fabric and colour research, textile experimentation, drape, patternmaking, and illustration as well as more recent methods such as laser cutting. Interrogating the traditional approaches to garment construction is necessarily a technical process; however fashion design is as much about the aesthetic and desirability of a garment as it is about the garment’s pragmatics or utility. This requires a balance between the technical demands of designing for disassembly with the aesthetic demands of fashion. This led to the selection of luxurious, semi-transparent fabrics in bold floral colours that could be layered to create multiple visual effects, as well as the experimentation with laser cutting for new forms of finishing and fastening the fabrics together. Shrinking Violets makes two contributions to new knowledge in the area of design for sustainability within fashion. The first is in the technical development of apparel modularity through the system of laser cut holes and knots that also become a patterning device. The second contribution lies in the design of a system for users to engage with the garment through its ability to be easily reconstructed into a new form. Research Significance Shrinking Violets was exhibited at the State Library of Queensland’s Asia Pacific Design Library, 1-5 November 2015, as part of The International Association of Societies of Design Research’s (IASDR) biannual design conference. The work was chosen for display by a panel of experts, based on the criteria of design innovation and contribution to new knowledge in design. References Gulich, B. (2006). Designing textile products that are easy to recycle. In Y. Wang (Ed.), Recycling in Textiles (pp. 25-37). London: Woodhead. Hawley, J. M. (2011). Textile recycling options: exploring what could be. In A. Gwilt & T. Rissanen (Eds.), Shaping Sustainable Fashion: Changing the way we make and use clothes (pp. 143 - 155). London: Earthscan. Ruiz, B. (2014). Global Apparel Manufacturing. Retrieved 10 August 2014, from http://clients1.ibisworld.com/reports/gl/industry/default.aspx?entid=470
Resumo:
Engineering graduates of today, face a working environment that assumes global mobility in the labour market. This challenge means, amongst universities worldwide, a demand to increase the globalisation of educational programs, context, and increase and support the mobility of students through mechanisms such as student exchange and double masters degrees. Engineering student mobility from Australia is low with only a few Engineering Faculties encouraging students to go internationally. This comparative study, using universities in Australia and Europe, of feedback from students who have been on exchange or proposing to go on exchange, employers and faculty addresses the motivators and barriers to student mobility and exchange from the perspectives of the university, faculty, students and employers. Recommendations will be presented on how student mobility and exchange can be improved, and mechanisms such as double Masters Degrees, dual accreditation and Erasmus Mundus 2009 – 2013 can be utilised to improve student mobility.
Resumo:
Based on Newmark-β method, a structural vibration response is predicted. Through finding the appropriate control force parameters within certain ranges to optimize the objective function, the predictive control of the structural vibration is achieved. At the same time, the numerical simulation analysis of a two-storey frame structure with magneto-rheological (MR) dampers under earthquake records is carried out, and the parameter influence on structural vibration reduction is discussed. The results demonstrate that the semi-active control based on Newmark-β predictive algorithm is better than the classical control strategy based on full-state feedback control and has remarkable advantages of structural vibration reduction and control robustness.
Resumo:
The effects of sintering on several properties of FTO and ITO substates used in DSC have been investigated. FTO & ITO substrates were prepared with a range of sizes and aspect ratios - emulated laboratory style test cells through to prototype modules. Time and temperature of the sintering profiles were varied and sheet resistance and flatness measured. Electrical properties of the substrates were then further characterized by electrochemical impedance spectroscopy, and module sized devices were assembled and thickness variations over the device area were determined and related to performance.
Resumo:
An algorithm to improve the accuracy and stability of rigid-body contact force calculation is presented. The algorithm uses a combination of analytic solutions and numerical methods to solve a spring-damper differential equation typical of a contact model. The solution method employs the recently proposed patch method, which especially suits the spring-damper differential equations. The resulting semi-analytic solution reduces the stiffness of the differential equations, while performing faster than conventional alternatives.
Resumo:
This paper proposes a semi-supervised intelligent visual surveillance system to exploit the information from multi-camera networks for the monitoring of people and vehicles. Modules are proposed to perform critical surveillance tasks including: the management and calibration of cameras within a multi-camera network; tracking of objects across multiple views; recognition of people utilising biometrics and in particular soft-biometrics; the monitoring of crowds; and activity recognition. Recent advances in these computer vision modules and capability gaps in surveillance technology are also highlighted.
Resumo:
Vehicular traffic in urban areas may adversely affect urban water quality through the build-up of traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) on road surfaces. The characterisation of the build-up processes is the key to developing mitigation measures for the removal of such pollutants from urban stormwater. An in-depth analysis of the build-up of SVOCs and NVOCs was undertaken in the Gold Coast region in Australia. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the SVOC and NVOC build-up under combined traffic scenarios of low, moderate, and high traffic in different land uses. It was found that congestion in the commercial areas and use of lubricants and motor oils in the industrial areas were the main sources of SVOCs and NVOCs on urban roads, respectively. The contribution from residential areas to the build-up of such pollutants was hardly noticeable. It was also revealed through this investigation that the target SVOCs and NVOCs were mainly attached to particulate fractions of 75 to 300 µm whilst the redistribution of coarse fractions due to vehicle activity mainly occurred in the >300 µm size range. Lastly, under combined traffic scenario, moderate traffic with average daily traffic ranging from 2300 to 5900 and average congestion of 0.47 was found to dominate SVOC and NVOC build-up on roads.
Resumo:
The functional properties of cartilaginous tissues are determined predominantly by the content, distribution, and organization of proteoglycan and collagen in the extracellular matrix. Extracellular matrix accumulates in tissue-engineered cartilage constructs by metabolism and transport of matrix molecules, processes that are modulated by physical and chemical factors. Constructs incubated under free-swelling conditions with freely permeable or highly permeable membranes exhibit symmetric surface regions of soft tissue. The variation in tissue properties with depth from the surfaces suggests the hypothesis that the transport processes mediated by the boundary conditions govern the distribution of proteoglycan in such constructs. A continuum model (DiMicco and Sah in Transport Porus Med 50:57-73, 2003) was extended to test the effects of membrane permeability and perfusion on proteoglycan accumulation in tissue-engineered cartilage. The concentrations of soluble, bound, and degraded proteoglycan were analyzed as functions of time, space, and non-dimensional parameters for several experimental configurations. The results of the model suggest that the boundary condition at the membrane surface and the rate of perfusion, described by non-dimensional parameters, are important determinants of the pattern of proteoglycan accumulation. With perfusion, the proteoglycan profile is skewed, and decreases or increases in magnitude depending on the level of flow-based stimulation. Utilization of a semi-permeable membrane with or without unidirectional flow may lead to tissues with depth-increasing proteoglycan content, resembling native articular cartilage.
Resumo:
Due to the limitation of current condition monitoring technologies, the estimates of asset health states may contain some uncertainties. A maintenance strategy ignoring this uncertainty of asset health state can cause additional costs or downtime. The partially observable Markov decision process (POMDP) is a commonly used approach to derive optimal maintenance strategies when asset health inspections are imperfect. However, existing applications of the POMDP to maintenance decision-making largely adopt the discrete time and state assumptions. The discrete-time assumption requires the health state transitions and maintenance activities only happen at discrete epochs, which cannot model the failure time accurately and is not cost-effective. The discrete health state assumption, on the other hand, may not be elaborate enough to improve the effectiveness of maintenance. To address these limitations, this paper proposes a continuous state partially observable semi-Markov decision process (POSMDP). An algorithm that combines the Monte Carlo-based density projection method and the policy iteration is developed to solve the POSMDP. Different types of maintenance activities (i.e., inspections, replacement, and imperfect maintenance) are considered in this paper. The next maintenance action and the corresponding waiting durations are optimized jointly to minimize the long-run expected cost per unit time and availability. The result of simulation studies shows that the proposed maintenance optimization approach is more cost-effective than maintenance strategies derived by another two approximate methods, when regular inspection intervals are adopted. The simulation study also shows that the maintenance cost can be further reduced by developing maintenance strategies with state-dependent maintenance intervals using the POSMDP. In addition, during the simulation studies the proposed POSMDP shows the ability to adopt a cost-effective strategy structure when multiple types of maintenance activities are involved.
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.
Resumo:
Single particle analysis (SPA) coupled with high-resolution electron cryo-microscopy is emerging as a powerful technique for the structure determination of membrane protein complexes and soluble macromolecular assemblies. Current estimates suggest that ∼104–105 particle projections are required to attain a 3 Å resolution 3D reconstruction (symmetry dependent). Selecting this number of molecular projections differing in size, shape and symmetry is a rate-limiting step for the automation of 3D image reconstruction. Here, we present SwarmPS, a feature rich GUI based software package to manage large scale, semi-automated particle picking projects. The software provides cross-correlation and edge-detection algorithms. Algorithm-specific parameters are transparently and automatically determined through user interaction with the image, rather than by trial and error. Other features include multiple image handling (∼102), local and global particle selection options, interactive image freezing, automatic particle centering, and full manual override to correct false positives and negatives. SwarmPS is user friendly, flexible, extensible, fast, and capable of exporting boxed out projection images, or particle coordinates, compatible with downstream image processing suites.