95 resultados para SUBSTITUENT PATTERN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterprise Application Integration (EAI) is a challenging area that is attracting growing attention from the software industry and the research community. A landscape of languages and techniques for EAI has emerged and is continuously being enriched with new proposals from different software vendors and coalitions. However, little or no effort has been dedicated to systematically evaluate and compare these languages and techniques. The work reported in this paper is a first step in this direction. It presents an in-depth analysis of a language, namely the Business Modeling Language, specifically developed for EAI. The framework used for this analysis is based on a number of workflow and communication patterns. This framework provides a basis for evaluating the advantages and drawbacks of EAI languages with respect to recurrent problems and situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cat’s claw creeper, Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) is a major environmental weed of riparian areas, rainforest communities and remnant natural vegetation in coastal Queensland and New South Wales, Australia. In densely infested areas, it smothers standing vegetation, including large trees, and causes canopy collapse. Quantitative data on the ecology of this invasive vine are generally lacking. The present study examines the underground tuber traits of M. unguis-cati and explores their links with aboveground parameters at five infested sites spanning both riparian and inland vegetation. Tubers were abundant in terms of density (~1000 per m2), although small in size and low in level of interconnectivity. M. unguis-cati also exhibits multiple stems per plant. Of all traits screened, the link between stand (stem density) and tuber density was the most significant and yielded a promising bivariate relationship for the purposes of estimation, prediction and management of what lies beneath the soil surface of a given M. unguis-cati infestation site. The study also suggests that new recruitment is primarily from seeds, not from vegetative propagation as previously thought. The results highlight the need for future biological-control efforts to focus on introducing specialist seed- and pod-feeding insects to reduce seed-output.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational biology increasingly demands the sharing of sophisticated data and annotations between research groups. Web 2.0 style sharing and publication requires that biological systems be described in well-defined, yet flexible and extensible formats which enhance exchange and re-use. In contrast to many of the standards for exchange in the genomic sciences, descriptions of biological sequences show a great diversity in format and function, impeding the definition and exchange of sequence patterns. In this presentation, we introduce BioPatML, an XML-based pattern description language that supports a wide range of patterns and allows the construction of complex, hierarchically structured patterns and pattern libraries. BioPatML unifies the diversity of current pattern description languages and fills a gap in the set of XML-based description languages for biological systems. We discuss the structure and elements of the language, and demonstrate its advantages on a series of applications, showing lightweight integration between the BioPatML parser and search engine, and the SilverGene genome browser. We conclude by describing our site to enable large scale pattern sharing, and our efforts to seed this repository.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecological dynamics characterizes adaptive behavior as an emergent, self-organizing property of interpersonal interactions in complex social systems. The authors conceptualize and investigate constraints on dynamics of decisions and actions in the multiagent system of team sports. They studied coadaptive interpersonal dynamics in rugby union to model potential control parameter and collective variable relations in attacker–defender dyads. A videogrammetry analysis revealed how some agents generated fluctuations by adapting displacement velocity to create phase transitions and destabilize dyadic subsystems near the try line. Agent interpersonal dynamics exhibited characteristics of chaotic attractors and informational constraints of rugby union boxed dyadic systems into a low dimensional attractor. Data suggests that decisions and actions of agents in sports teams may be characterized as emergent, self-organizing properties, governed by laws of dynamical systems at the ecological scale. Further research needs to generalize this conceptual model of adaptive behavior in performance to other multiagent populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the region of self-organized criticality (SOC) interdependency between multi-agent system components exists and slight changes in near-neighbor interactions can break the balance of equally poised options leading to transitions in system order. In this region, frequency of events of differing magnitudes exhibits a power law distribution. The aim of this paper was to investigate whether a power law distribution characterized attacker-defender interactions in team sports. For this purpose we observed attacker and defender in a dyadic sub-phase of rugby union near the try line. Videogrammetry was used to capture players’ motion over time as player locations were digitized. Power laws were calculated for the rate of change of players’ relative position. Data revealed that three emergent patterns from dyadic system interactions (i.e., try; unsuccessful tackle; effective tackle) displayed a power law distribution. Results suggested that pattern forming dynamics dyads in rugby union exhibited SOC. It was concluded that rugby union dyads evolve in SOC regions suggesting that players’ decisions and actions are governed by local interactions rules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigated human visual processing of simple two-colour patterns using a delayed match to sample paradigm with positron emission tomography (PET). This study is unique in that the authors specifically designed the visual stimuli to be the same for both pattern and colour recognition with all patterns being abstract shapes not easily verbally coded composed of two-colour combinations. The authors did this to explore those brain regions required for both colour and pattern processing and to separate those areas of activation required for one or the other. 10 right-handed male volunteers aged 18–35 yrs were recruited. The authors found that both tasks activated similar occipital regions, the major difference being more extensive activation in pattern recognition. A right-sided network that involved the inferior parietal lobule, the head of the caudate nucleus, and the pulvinar nucleus of the thalamus was common to both paradigms. Pattern recognition also activated the left temporal pole and right lateral orbital gyrus, whereas colour recognition activated the left fusiform gyrus and several right frontal regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many data mining techniques have been proposed for mining useful patterns in databases. However, how to effectively utilize discovered patterns is still an open research issue, especially in the domain of text mining. Most existing methods adopt term-based approaches. However, they all suffer from the problems of polysemy and synonymy. This paper presents an innovative technique, pattern taxonomy mining, to improve the effectiveness of using discovered patterns for finding useful information. Substantial experiments on RCV1 demonstrate that the proposed solution achieves encouraging performance.