456 resultados para SOCIETY SOURCE CLAYS
Resumo:
Bulk and size-fractionated kaolinites from seven localities in Australia as well as the Clay Minerals Society Source Clays Georgia KGa-1 and KGa-2 have been studied by X-ray diffraction (XRD), laser scattering, and electron microscopy in order to understand the variation of particle characteristics across a range of environments and to correlate specific particle characteristics with intercalation behavior. All kaolinites have been intercalated with N-methyl (NMF) after pretreatment with hydrazine hydrate, and the relative efficiency of intercalation has been determined using XRD. Intercalate yields of kaolinite: NMF are consistently low for bulk samples that have a high proportion of small-sized particles (i.e., <0.5 µm) and for biphased kaolinites with a high percentage (>60%) of low-defect phase. In general, particle size appears to be a more significant controlling factor than defect distribution in determining the relative yield of kaolinite: NMF intercalate.
Resumo:
Bulk and size-fractionated kaolinites from seven localities in Australia as well as the Clay Minerals Society Source Clays Georgia KGa-1 and KGa-2 have been studied by X-ray diffraction (XRD), laser scattering, and electron microscopy in order to understand the variation of particle characteristics across a range of environments and to correlate specific particle characteristics with intercalation behavior. All kaolinites have been intercalated with N-methyl formamide (NMF) after pretreatment with hydrazine hydrate, and the relative efficiency of intercalation has been determined using XRD. Intercalate yields of kaolinite: NMF are consistently low for bulk samples that have a high proportion of small-sized particles (i.e., <0.5 µm) and for biphased kaolinites with a high percentage (>60%) of low-defect phase. In general, particle size appears to be a more significant controlling factor than defect distribution in determining the relative yield of kaolinite: NMF intercalate.
Resumo:
The Clay Minerals Society Source Clay kaolinites, Georgia KGa-1 and KGa-2, have been subjected to particle size determinations by 1) conventional sedimentation methods, 2) electron microscopy and image analysis, and 3) laser scattering using improved algorithms for the interaction of light with small particles. Particle shape, size distribution, and crystallinity vary considerably for each kaolinite. Replicate analyses of separated size fractions showed that in the <2 µm range, the sedimentation/centrifugation method of Tanner and Jackson (1947) is reproducible for different kaolinite types and that the calculated size ranges are in reasonable agreement with the size bins estimated from laser scattering. Particle sizes determined by laser scattering must be calculated using Mie theory when the dominant particle size is less than ∼5 µm. Based on this study of two well-known and structurally different kaolinites, laser scattering, with improved data reduction algorithms that include Mie theory, should be considered an internally consistent and rapid technique for clay particle sizing.
Resumo:
The notion of designing with change constitutes a fundamental and foundational theoretical premise for much of what constitutes landscape architecture, notably through engagement with ecology, particularly since the work of Ian McHarg in the 1960s and his key text Design with Nature. However, while most if not all texts in landscape architecture would cite this engagement of change theoretically, few go any further than citation, and when they do their methods seem fixated on utilising empirical, quantitative scientific tools for doing so, rather than the tools of design, in an architectural sense, as implied by the name of the discipline, landscape architecture.
Resumo:
In this paper, we consider a variable-order fractional advection-diffusion equation with a nonlinear source term on a finite domain. Explicit and implicit Euler approximations for the equation are proposed. Stability and convergence of the methods are discussed. Moreover, we also present a fractional method of lines, a matrix transfer technique, and an extrapolation method for the equation. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis.
Resumo:
We present a novel method and instrument for in vivo imaging and measurement of the human corneal dynamics during an air puff. The instrument is based on high-speed swept source optical coherence tomography (ssOCT) combined with a custom adapted air puff chamber from a non-contact tonometer, which uses an air stream to deform the cornea in a non-invasive manner. During the short period of time that the deformation takes place, the ssOCT acquires multiple A-scans in time (M-scan) at the center of the air puff, allowing observation of the dynamics of the anterior and posterior corneal surfaces as well as the anterior lens surface. The dynamics of the measurement are driven by the biomechanical properties of the human eye as well as its intraocular pressure. Thus, the analysis of the M-scan may provide useful information about the biomechanical behavior of the anterior segment during the applanation caused by the air puff. An initial set of controlled clinical experiments are shown to comprehend the performance of the instrument and its potential applicability to further understand the eye biomechanics and intraocular pressure measurements. Limitations and possibilities of the new apparatus are discussed.
Influence of carbohydrate source on the in vitro flowering of Sturt's desert pea (Swainsona formosa)
Resumo:
Vacuuming can be a source of indoor exposure to biological and non-biological aerosols, although there is little data that describes the magnitude of emissions from the vacuum cleaner itself. We therefore sought to quantify emission rates of particles and bacteria from a large group of vacuum cleaners and investigate their potential determinants, including temperature, dust bags, exhaust filters, price and age. Emissions of particles between 0.009 and 20 µm and bacteria were measured from 21 vacuums. Ultrafine (<100 nm) particle emission rates ranged from 4.0 × 10^6 to 1.1 × 10^11 particles min-1. Emission of 0.54 to 20 µm particles ranged from 4.0 × 10^4 to 1.2 × 10^9 particles min-1. PM2.5 emissions were between 2.4 × 10-1 and 5.4 × 10^3 µg min-1. Bacteria emissions ranged from 0 to 7.4 × 10^5 bacteria min-1 and were poorly correlated with dust bag bacteria content and particle emissions. Large variability in emission of all parameters was observed across the 21 vacuums we assessed, which was largely not attributable to the range of determinant factors we assessed. Vacuum cleaner emissions contribute to indoor exposure to non-biological and biological aerosols when vacuuming, and this may vary markedly depending on the vacuum used.
Resumo:
Kaolinite:NaCl intercalates with basal layer dimensions of 0.95 and 1.25 nm have been prepared by direct reaction of saturated aqueous NaCl solution with well-crystallized source clay KGa-1. The intercalates and their thermal decomposition products have been studied by XRD, solid-state 23Na, 27Al, and 29Si MAS NMR, and FTIR. Intercalate yield is enhanced by dry grinding of kaolinite with NaCl prior to intercalation. The layered structure survives dehydroxylation of the kaolinite at 500°–600°C and persists to above 800°C with a resultant tetrahedral aluminosilicate framework. Excess NaCl can be readily removed by rinsing with water, producing an XRD ‘amorphous’ material. Upon heating at 900°C this material converts to a well-crystallized framework aluminosilicate closely related to low-camegieite, NaAlSiO4, some 350°C below its stability field. Reaction mechanisms are discussed and structural models proposed for each of these novel materials.
Resumo:
HRTEM has been used to examine illite/smectite from the Mancos shale, rectorite from Garland County, Arkansas; illite from Silver Hill, Montana; Na-smectite from Crook County, Wyoming; corrensite from Packwood, Washington; and diagenetic chlorite from the Tuscaloosa formation. Thin specimens were prepared by ion milling, ultra-microtome sectioning and/or grain dispersal on a porous carbon substrate. Some smectite-bearing clays were also examined after intercalation with dodecylamine hydrochloride (DH). Intercalation of smectite with DH proved to be a reliable method of HRTEM imaging of expanded smectite, d(001) 16 A which could then be distinguished from unexpanded illite, d(001) 10 A. Lattice fringes of basal spacings of DH-intercalated rectorite and illite/smectite showed 26 A periodicity. These data support XRD studies which suggest that these samples are ordered, interstratified varieties of illite and smectite. The ion-thinned, unexpanded corrensite sample showed discrete crystallites containing 10 A and 14 A basal spacings corresponding with collapsed smectite and chlorite, respectively. Regions containing disordered layers of chlorite and smectite were also noted. Crystallites containing regular alternations of smectite and chlorite were not common. These HRTEM observations of corrensite did not corroborate XRD data. Particle sizes parallel to the c axis ranged widely for each sample studied, and many particles showed basal dimensions equivalent to > five layers. -J.M.H.