384 resultados para Rural transportation
Resumo:
This paper uses a correlated multinomial logit model and a Poisson regression model to measure the factors affecting demand for different types of transportation by elderly and disabled people in rural Virginia. The major results are: (a) A paratransit system providing door-to-door service is highly valued by transportation-handicapped people; (b) Taxis are probably a potential but inferior alternative even when subsidized; (c) Buses are a poor alternative, especially in rural areas where distances to bus stops may be long; (d) Making buses handicap-accessible would have a statistically significant but small effect on mode choice; (e) Demand is price inelastic; and (f) The total number of trips taken is insensitive to mode availability and characteristics. These results suggest that transportation-handicapped people take a limited number of trips. Those they do take are in some sense necessary (given the low elasticity with respect to mode price or availability). People will substitute away from relying upon others when appropriate transportation is available, at least to some degree. But such transportation needs to be flexible enough to meet the needs of the people involved.
Resumo:
• Introduction: Concern and action for rural road safety is relatively new in Australia in comparison to the field of traffic safety as a whole. In 2003, a program of research was begun by the Centre for Accident Research and Road Safety - Queensland (CARRS-Q) and the Rural Health Research Unit (RHRU) at James Cook University to investigate factors contributing to serious rural road crashes in the North Queensland region. This project was funded by the Premier’s Department, Main Roads Department, Queensland Transport, QFleet, Queensland Rail, Queensland Ambulance Service, Department of Natural Resources and Queensland Police Service. Additional funding was provided by NRMA Insurance for a PhD scholarship. In-kind support was provided through the four hospitals used for data collection, namely Cairns Base Hospital, The Townsville Hospital, Mount Isa Hospital and Atherton Hospital.----- The primary aim of the project was to: Identify human factors related to the occurrence of serious traffic incidents in rural and remote areas of Australia, and to the trauma suffered by persons as a result of these incidents, using a sample drawn from a rural and remote area in North Queensland.----- The data and analyses presented in this report are the core findings from two broad studies: a general examination of fatalities and casualties from rural and remote crashes for the period 1 March 2004 until 30 June 2007, and a further linked case-comparison study of hospitalised patients compared with a sample of non-crash-involved drivers.----- • Method: The study was undertaken in rural North Queensland, as defined by the Australian Bureau of Statistics (ABS) statistical divisions of North Queensland, Far North Queensland and North-West Queensland. Urban areas surrounding Townsville, Thuringowa and Cairns were not included. The study methodology was centred on serious crashes, as defined by a resulting hospitalisation for 24 hours or more and/or a fatality. Crashes meeting this criteria within the North Queensland region between 1 March 2004 and 30 June 2007 were identified through hospital records and interviewed where possible. Additional data was sourced from coroner’s reports, the Queensland Transport road crash database, the Queensland Ambulance Service and the study hospitals in the region.----- This report is divided into chapters corresponding to analyses conducted on the collected crash and casualty data.----- Chapter 3 presents an overview of all crashes and casualties identified during the study period. Details are presented in regard to the demographics and road user types of casualties; the locations, times, types, and circumstances of crashes; along with the contributing circumstances of crashes.----- Chapter 4 presents the results of summary statistics for all casualties for which an interview was able to be conducted. Statistics are presented separately for drivers and riders, passengers, pedestrians and cyclists. Details are also presented separately for drivers and riders crashing in off-road and on-road settings. Results from questionnaire data are presented in relation to demographics; the experience of the crash in narrative form; vehicle characteristics and maintenance; trip characteristics (e.g. purpose and length of journey; periods of fatigue and monotony; distractions from driving task); driving history; alcohol and drug use; medical history; driving attitudes, intentions and behaviour; attitudes to enforcement; and experience of road safety advertising.----- Chapter 5 compares the above-listed questionnaire results between on-road crash-involved casualties and interviews conducted in the region with non-crash-involved persons. Direct comparisons as well as age and sex adjusted comparisons are presented.----- Chapter 6 presents information on those casualties who were admitted to one of the study hospitals during the study period. Brief information is given regarding the demographic characteristics of these casualties. Emergency services’ data is used to highlight the characteristics of patient retrieval and transport to and between hospitals. The major injuries resulting from the crashes are presented for each region of the body and analysed by vehicle type, occupant type, seatbelt status, helmet status, alcohol involvement and nature of crash. Estimates are provided of the costs associated with in-hospital treatment and retrieval.----- Chapter 7 describes the characteristics of the fatal casualties and the nature and circumstances of the crashes. Demographics, road user types, licence status, crash type and contributing factors for crashes are presented. Coronial data is provided in regard to contributing circumstances (including alcohol, drugs and medical conditions), cause of death, resulting injuries, and restraint and helmet use.----- Chapter 8 presents the results of a comparison between casualties’ crash descriptions and police-attributed crash circumstances. The relative frequency of contributing circumstances are compared both broadly within the categories of behavioural, environmental, vehicle related, medical and other groupings and specifically for circumstances within these groups.----- Chapter 9 reports on the associated research projects which have been undertaken on specific topics related to rural road safety.----- Finally, Chapter 10 reports on the conclusions and recommendations made from the program of research.---- • Major Recommendations : From the findings of these analyses, a number of major recommendations were made: + Male drivers and riders - Male drivers and riders should continue to be the focus of interventions, given their very high representation among rural and remote road crash fatalities and serious injuries.----- - The group of males aged between 30 and 50 years comprised the largest number of casualties and must also be targeted for change if there is to be a meaningful improvement in rural and remote road safety.----- + Motorcyclists - Single vehicle motorcycle crashes constitute over 80% of serious, on-road rural motorcycle crashes and need particular attention in development of policy and infrastructure.----- - The motorcycle safety consultation process currently being undertaken by Queensland Transport (via the "Motorbike Safety in Queensland - Consultation Paper") is strongly endorsed. As part of this process, particular attention needs to be given to initiatives designed to reduce rural and single vehicle motorcycle crashes.----- - The safety of off-road riders is a serious problem that falls outside the direct responsibility of either Transport or Health departments. Responsibility for this issue needs to be attributed to develop appropriate policy, regulations and countermeasures.----- + Road safety for Indigenous people - Continued resourcing and expansion of The Queensland Aboriginal Peoples and Torres Strait Islander Peoples Driver Licensing Program to meet the needs of remote and Indigenous communities with significantly lower licence ownership levels.----- - Increased attention needs to focus on the contribution of geographic disadvantage (remoteness) factors to remote and Indigenous road trauma.----- + Road environment - Speed is the ‘final common pathway’ in determining the severity of rural and remote crashes and rural speed limits should be reduced to 90km/hr for sealed off-highway roads and 80km/hr for all unsealed roads as recommended in the Austroads review and in line with the current Tasmanian government trial.----- - The Department of Main Roads should monitor rural crash clusters and where appropriate work with local authorities to conduct relevant audits and take mitigating action. - The international experts at the workshop reviewed the data and identified the need to focus particular attention on road design management for dangerous curves. They also indicated the need to maximise the use of audio-tactile linemarking (audible lines) and rumble strips to alert drivers to dangerous conditions and behaviours.----- + Trauma costs - In accordance with Queensland Health priorities, recognition should be given to the substantial financial costs associated with acute management of trauma resulting from serious rural and remote crashes.----- - Efforts should be made to develop a comprehensive, regionally specific costing formula for road trauma that incorporates the pre-hospital, hospital and post-hospital phases of care. This would inform health resource allocation and facilitate the evaluation of interventions.----- - The commitment of funds to the development of preventive strategies to reduce rural and remote crashes should take into account the potential cost savings associated with trauma.----- - A dedicated study of the rehabilitation needs and associated personal and healthcare costs arising from rural and remote road crashes should be undertaken.----- + Emergency services - While the study has demonstrated considerable efficiency in the response and retrieval systems of rural and remote North Queensland, relevant Intelligent Transport Systems technologies (such as vehicle alarm systems) to improve crash notification should be both developed and evaluated.----- + Enforcement - Alcohol and speed enforcement programs should target the period between 2 and 6pm because of the high numbers of crashes in the afternoon period throughout the rural region.----- + Drink driving - Courtesy buses should be advocated and schemes such as the Skipper project promoted as local drink driving countermeasures in line with the very high levels of community support for these measures identified in the hospital study.------ - Programs should be developed to target the high levels of alcohol consumption identified in rural and remote areas and related involvement in crashes.----- - Referrals to drink driving rehabilitation programs should be mandated for recidivist offenders.----- + Data requirements - Rural and remote road crashes should receive the same quality of attention as urban crashes. As such, it is strongly recommended that increased resources be committed to enable dedicated Forensic Crash Units to investigate rural and remote fatal and serious injury crashes.----- - Transport department records of rural and remote crashes should record the crash location using the national ARIA area classifications used by health departments as a means to better identifying rural crashes.----- - Rural and remote crashes tend to be unnoticed except in relatively infrequent rural reviews. They should receive the same level of attention and this could be achieved if fatalities and fatal crashes were coded by the ARIA classification system and included in regular crash reporting.----- - Health, Transport and Police agencies should collect a common, minimal set of data relating to road crashes and injuries, including presentations to small rural and remote health facilities.----- + Media and community education programmes - Interventions seeking to highlight the human contribution to crashes should be prioritised. Driver distraction, alcohol and inappropriate speed for the road conditions are key examples of such behaviours.----- - Promotion of basic safety behaviours such as the use of seatbelts and helmets should be given a renewed focus.----- - Knowledge, attitude and behavioural factors that have been identified for the hospital Brief Intervention Trial should be considered in developing safety campaigns for rural and remote people. For example challenging the myth of the dangerous ‘other’ or ‘non-local’ driver.----- - Special educational initiatives on the issues involved in rural and remote driving should be undertaken. For example the material used by Main Roads, the Australian Defence Force and local initiatives.
Resumo:
A national-level safety analysis tool is needed to complement existing analytical tools for assessment of the safety impacts of roadway design alternatives. FHWA has sponsored the development of the Interactive Highway Safety Design Model (IHSDM), which is roadway design and redesign software that estimates the safety effects of alternative designs. Considering the importance of IHSDM in shaping the future of safety-related transportation investment decisions, FHWA justifiably sponsored research with the sole intent of independently validating some of the statistical models and algorithms in IHSDM. Statistical model validation aims to accomplish many important tasks, including (a) assessment of the logical defensibility of proposed models, (b) assessment of the transferability of models over future time periods and across different geographic locations, and (c) identification of areas in which future model improvements should be made. These three activities are reported for five proposed types of rural intersection crash prediction models. The internal validation of the model revealed that the crash models potentially suffer from omitted variables that affect safety, site selection and countermeasure selection bias, poorly measured and surrogate variables, and misspecification of model functional forms. The external validation indicated the inability of models to perform on par with model estimation performance. Recommendations for improving the state of the practice from this research include the systematic conduct of carefully designed before-and-after studies, improvements in data standardization and collection practices, and the development of analytical methods to combine the results of before-and-after studies with cross-sectional studies in a meaningful and useful way.
Resumo:
One major gap in transportation system safety management is the ability to assess the safety ramifications of design changes for both new road projects and modifications to existing roads. To fulfill this need, FHWA and its many partners are developing a safety forecasting tool, the Interactive Highway Safety Design Model (IHSDM). The tool will be used by roadway design engineers, safety analysts, and planners throughout the United States. As such, the statistical models embedded in IHSDM will need to be able to forecast safety impacts under a wide range of roadway configurations and environmental conditions for a wide range of driver populations and will need to be able to capture elements of driving risk across states. One of the IHSDM algorithms developed by FHWA and its contractors is for forecasting accidents on rural road segments and rural intersections. The methodological approach is to use predictive models for specific base conditions, with traffic volume information as the sole explanatory variable for crashes, and then to apply regional or state calibration factors and accident modification factors (AMFs) to estimate the impact on accidents of geometric characteristics that differ from the base model conditions. In the majority of past approaches, AMFs are derived from parameter estimates associated with the explanatory variables. A recent study for FHWA used a multistate database to examine in detail the use of the algorithm with the base model-AMF approach and explored alternative base model forms as well as the use of full models that included nontraffic-related variables and other approaches to estimate AMFs. That research effort is reported. The results support the IHSDM methodology.
Resumo:
Safety interventions (e.g., median barriers, photo enforcement) and road features (e.g., median type and width) can influence crash severity, crash frequency, or both. Both dimensions—crash frequency and crash severity—are needed to obtain a full accounting of road safety. Extensive literature and common sense both dictate that crashes are not created equal, with fatalities costing society more than 1,000 times the cost of property damage crashes on average. Despite this glaring disparity, the profession has not unanimously embraced or successfully defended a nonarbitrary severity weighting approach for analyzing safety data and conducting safety analyses. It is argued here that the two dimensions (frequency and severity) are made available by intelligently and reliably weighting crash frequencies and converting all crashes to property-damage-only crash equivalents (PDOEs) by using comprehensive societal unit crash costs. This approach is analogous to calculating axle load equivalents in the prediction of pavement damage: for instance, a 40,000-lb truck causes 4,025 times more stress than does a 4,000-lb car and so simply counting axles is not sufficient. Calculating PDOEs using unit crash costs is the most defensible and nonarbitrary weighting scheme, allows for the simple incorporation of severity and frequency, and leads to crash models that are sensitive to factors that affect crash severity. Moreover, using PDOEs diminishes the errors introduced by underreporting of less severe crashes—an added benefit of the PDOE analysis approach. The method is illustrated with rural road segment data from South Korea (which in practice would develop PDOEs with Korean crash cost data).
Resumo:
Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.
Resumo:
It is important to examine the nature of the relationships between roadway, environmental, and traffic factors and motor vehicle crashes, with the aim to improve the collective understanding of causal mechanisms involved in crashes and to better predict their occurrence. Statistical models of motor vehicle crashes are one path of inquiry often used to gain these initial insights. Recent efforts have focused on the estimation of negative binomial and Poisson regression models (and related deviants) due to their relatively good fit to crash data. Of course analysts constantly seek methods that offer greater consistency with the data generating mechanism (motor vehicle crashes in this case), provide better statistical fit, and provide insight into data structure that was previously unavailable. One such opportunity exists with some types of crash data, in particular crash-level data that are collected across roadway segments, intersections, etc. It is argued in this paper that some crash data possess hierarchical structure that has not routinely been exploited. This paper describes the application of binomial multilevel models of crash types using 548 motor vehicle crashes collected from 91 two-lane rural intersections in the state of Georgia. Crash prediction models are estimated for angle, rear-end, and sideswipe (both same direction and opposite direction) crashes. The contributions of the paper are the realization of hierarchical data structure and the application of a theoretically appealing and suitable analysis approach for multilevel data, yielding insights into intersection-related crashes by crash type.
Resumo:
Understanding the expected safety performance of rural signalized intersections is critical for (a) identifying high-risk sites where the observed safety performance is substantially worse than the expected safety performance, (b) understanding influential factors associated with crashes, and (c) predicting the future performance of sites and helping plan safety-enhancing activities. These three critical activities are routinely conducted for safety management and planning purposes in jurisdictions throughout the United States and around the world. This paper aims to develop baseline expected safety performance functions of rural signalized intersections in South Korea, which to date have not yet been established or reported in the literature. Data are examined from numerous locations within South Korea for both three-legged and four-legged configurations. The safety effects of a host of operational and geometric variables on the safety performance of these sites are also examined. In addition, supplementary tables and graphs are developed for comparing the baseline safety performance of sites with various geometric and operational features. These graphs identify how various factors are associated with safety. The expected safety prediction tables offer advantages over regression prediction equations by allowing the safety manager to isolate specific features of the intersections and examine their impact on expected safety. The examination of the expected safety performance tables through illustrated examples highlights the need to correct for regression-to-the-mean effects, emphasizes the negative impacts of multicollinearity, shows why multivariate models do not translate well to accident modification factors, and illuminates the need to examine road safety carefully and methodically. Caveats are provided on the use of the safety performance prediction graphs developed in this paper.
Resumo:
A study was done to develop macrolevel crash prediction models that can be used to understand and identify effective countermeasures for improving signalized highway intersections and multilane stop-controlled highway intersections in rural areas. Poisson and negative binomial regression models were fit to intersection crash data from Georgia, California, and Michigan. To assess the suitability of the models, several goodness-of-fit measures were computed. The statistical models were then used to shed light on the relationships between crash occurrence and traffic and geometric features of the rural signalized intersections. The results revealed that traffic flow variables significantly affected the overall safety performance of the intersections regardless of intersection type and that the geometric features of intersections varied across intersection type and also influenced crash type.
Resumo:
Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.
Resumo:
The rural two-lane highway in the southeastern United States is frequently associated with a disproportionate number of serious and fatal crashes and as such remains a focus of considerable safety research. The Georgia Department of Transportation spearheaded a regional fatal crash analysis to identify various safety performances of two-lane rural highways and to offer guidance for identifying suitable countermeasures with which to mitigate fatal crashes. The fatal crash data used in this study were compiled from Alabama, Georgia, Mississippi, and South Carolina. The database, developed for an earlier study, included 557 randomly selected fatal crashes from 1997 or 1998 or both (this varied by state). Each participating state identified the candidate crashes and performed physical or video site visits to construct crash databases with enhance site-specific information. Motivated by the hypothesis that single- and multiple-vehicle crashes arise from fundamentally different circumstances, the research team applied binary logit models to predict the probability that a fatal crash is a single-vehicle run-off-road fatal crash given roadway design characteristics, roadside environment features, and traffic conditions proximal to the crash site. A wide variety of factors appears to influence or be associated with single-vehicle fatal crashes. In a model transferability assessment, the authors determined that lane width, horizontal curvature, and ambient lighting are the only three significant variables that are consistent for single-vehicle run-off-road crashes for all study locations.
Resumo:
Despite a wide variation in access to goods and services between rural areas, common policy interventions are often proposed in Northern Ireland. Questions remain as to the level and form of policy differentiation that is required, if any, both within and between different rural areas. This issue is investigated in this paper through the analysis of activity-travel patterns of individuals living in two rural areas with different levels of area accessibility and area mobility. Three focus groups, 299 questionnaires and 89 activity-travel diaries for 7 days were collected for individuals from these areas. Regression analyses were employed to explore the degree to which different factors influence activity travel behaviour. The results indicate that individuals from rural areas with a higher level of accessibility are more integrated within their local community and as a result, are potentially less at risk of being excluded from society due to immobility. Differences, however, were also found between different groups within an area (e.g. non-car owning individuals who were more reliant on walking, and low-income individuals who made trips of a shorter distance). Based on the study findings and a review of existing policies, this research highlights the need to tailor policy responses to reflect the particular sets of circumstances exhibited in different areas.
Resumo:
APPENDIX A : PAVEMENT QUALITY (Zhanmin Zhang, Michael R. Murphy, Robert Harrison), 7 pages -- APPENDIX B : BRIDGE QUALITY (Jose Weissmann, Angela J. Weissmann), 6 pages -- APPENDIX C : URBAN TRAFFIC CONGESTION (Tim Lomax, David Schrank), 32 pages -- APPENDIX D: RURAL CORRIDORS (Tim Lomax, David Schrank), 6 pages -- APPENDIX E: ADDITIONAL REVENUE SOURCE OPTIONS FOR PAVEMENT AND BRIDGE MAINTENANCE (Mike Murphy, Seokho Chi, Randy Machemehl, Khali Persad, Robert Harrison, Zhanmin Zhang), 81 pages -- APPENDIX F: FUNDING TRANSPORTATION IMPROVEMENTS (David Ellis, Brianne Glover, Nick Norboge, Wally Crittenden), 19 pages -- APPENDIX G: ESTIMATING VEHICLE OPERATING COSTS AND PAVEMENT DETERIORATION (by Robert Harrison), 4 pages
Importance of a resilient air services network to Australian remote, rural, and regional communities
Resumo:
Rural, regional, and remote settlements in Australia require resilient infrastructure to remain sustainable in a context characterized by frequent large-scale natural disasters, long distances between urban centers, and the pressures of economic change. A critical aspect of this infrastructure is the air services network, a system of airports, aircraft operators, and related industries that enables the high-speed movement of people, goods, and services to remote locations. A process of deregulation during the 1970s and 1980s resulted in many of these airports passing into local government and private ownership, and the rationalization of the industry saw the closure of a number of airlines and airports. This paper examines the impacts of deregulation on the resilience of air services and the contribution that they make to regional and rural communities. In particular, the robustness, redundancy, resourcefulness, and rapidity of the system are examined. The conclusion is that while the air services network has remained resilient in a situation of considerable change, the pressures of commercialization and the tendency to manage aspects of the system in isolation have contributed to a potential decrease in overall resilience.
Resumo:
Pilot cars are used in one-lane two-way work zones to guide traffic and keep their speeds within posted limits. While many studies have examined the effectiveness of measures to reduce vehicle speeds in work zones, little is known about the reductions achievable through the use of pilot cars. This paper examines the effectiveness of a pilot car in reducing travel speeds in a rural highway work zone in Queensland, Australia. Analysis of speed data covering a period of five days showed that a pilot car reduced average speeds at the treatment location, but not downstream. The proportion of vehicles speeding through the activity area was also reduced, particularly those traveling at 10 km/h or more above the posted limit. Motorists were more likely to speed during the day, under a 40 kh/h limit, when traffic volumes were higher and when there were fewer vehicles in the traffic stream. Medium vehicles were less likely to speed in the presence of a pilot car than light vehicles. To maximize these benefits, it is necessary to ensure that the pilot car itself is not speeding.