449 resultados para Robot applications


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In contrast to single robotic agent, multi-robot systems are highly dependent on reliable communication. Robots have to synchronize tasks or to share poses and sensor readings with other agents, especially for co-operative mapping task where local sensor readings are incorporated into a global map. The drawback of existing communication frameworks is that most are based on a central component which has to be constantly within reach. Additionally, they do not prevent data loss between robots if a failure occurs in the communication link. During a distributed mapping task, loss of data is critical because it will corrupt the global map. In this work, we propose a cloud-based publish/subscribe mechanism which enables reliable communication between agents during a cooperative mission using the Data Distribution Service (DDS) as a transport layer. The usability of our approach is verified by several experiments taking into account complete temporary communication loss.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological inspiration has produced some successful solutions for estimation of self motion from visual information. In this paper we present the construction of a unique new camera, inspired by the compound eye of insects. The hemispherical nature of the compound eye has some intrinsically valuable properties in producing optical flow fields that are suitable for egomotion estimation in six degrees of freedom. The camera that we present has the added advantage of being lightweight and low cost, making it suitable for a range of mobile robot applications. We present some initial results that show the effectiveness of our egomotion estimation algorithm and the image capture capability of the hemispherical camera.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a technique for high-dynamic range stereo for outdoor mobile robot applications. Stereo pairs are captured at a number of different exposures (exposure bracketing), and combined by projecting the 3D points into a common coordinate frame, and building a 3D occupancy map. We present experimental results for static scenes with constant and dynamic lighting as well as outdoor operation with variable and high contrast lighting conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hot metal carriers (HMCs) are large forklift-type vehicles used to move molten metal in aluminum smelters. This paper reports on field experiments that demonstrate that HMCs can operate autonomously and in particular can use vision as a primary sensor to locate the load of aluminum. We present our complete system but focus on the vision system elements and also detail experiments demonstrating reliable operation of the materials handling task. Two key experiments are described, lasting 2 and 5 h, in which the HMC traveled 15 km in total and handled the load 80 times.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Semantic perception and object labeling are key requirements for robots interacting with objects on a higher level. Symbolic annotation of objects allows the usage of planning algorithms for object interaction, for instance in a typical fetchand-carry scenario. In current research, perception is usually based on 3D scene reconstruction and geometric model matching, where trained features are matched with a 3D sample point cloud. In this work we propose a semantic perception method which is based on spatio-semantic features. These features are defined in a natural, symbolic way, such as geometry and spatial relation. In contrast to point-based model matching methods, a spatial ontology is used where objects are rather described how they "look like", similar to how a human would described unknown objects to another person. A fuzzy based reasoning approach matches perceivable features with a spatial ontology of the objects. The approach provides a method which is able to deal with senor noise and occlusions. Another advantage is that no training phase is needed in order to learn object features. The use-case of the proposed method is the detection of soil sample containers in an outdoor environment which have to be collected by a mobile robot. The approach is verified using real world experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There have been notable advances in learning to control complex robotic systems using methods such as Locally Weighted Regression (LWR). In this paper we explore some potential limits of LWR for robotic applications, particularly investigating its application to systems with a long horizon of temporal dependence. We define the horizon of temporal dependence as the delay from a control input to a desired change in output. LWR alone cannot be used in a temporally dependent system to find meaningful control values from only the current state variables and output, as the relationship between the input and the current state is under-constrained. By introducing a receding horizon of the future output states of the system, we show that sufficient constraint is applied to learn good solutions through LWR. The new method, Receding Horizon Locally Weighted Regression (RH-LWR), is demonstrated through one-shot learning on a real Series Elastic Actuator controlling a pendulum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary computation is an effective tool for solving optimization problems. However, its significant computational demand has limited its real-time and on-line applications, especially in embedded systems with limited computing resources, e.g., mobile robots. Heuristic methods such as the genetic algorithm (GA) based approaches have been investigated for robot path planning in dynamic environments. However, research on the simulated annealing (SA) algorithm, another popular evolutionary computation algorithm, for dynamic path planning is still limited mainly due to its high computational demand. An enhanced SA approach, which integrates two additional mathematical operators and initial path selection heuristics into the standard SA, is developed in this work for robot path planning in dynamic environments with both static and dynamic obstacles. It improves the computing performance of the standard SA significantly while giving an optimal or near-optimal robot path solution, making its real-time and on-line applications possible. Using the classic and deterministic Dijkstra algorithm as a benchmark, comprehensive case studies are carried out to demonstrate the performance of the enhanced SA and other SA algorithms in various dynamic path planning scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robotic systems are increasingly being utilised as fundamental data-gathering tools by scientists, allowing new perspectives and a greater understanding of the planet and its environmental processes. Today's robots are already exploring our deep oceans, tracking harmful algal blooms and pollution spread, monitoring climate variables, and even studying remote volcanoes. This article collates and discusses the significant advancements and applications of marine, terrestrial, and airborne robotic systems developed for environmental monitoring during the last two decades. Emerging research trends for achieving large-scale environmental monitoring are also reviewed, including cooperative robotic teams, robot and wireless sensor network (WSN) interaction, adaptive sampling and model-aided path planning. These trends offer efficient and precise measurement of environmental processes at unprecedented scales that will push the frontiers of robotic and natural sciences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed Wireless Smart Camera (DWSC) network is a special type of Wireless Sensor Network (WSN) that processes captured images in a distributed manner. While image processing on DWSCs sees a great potential for growth, with its applications possessing a vast practical application domain such as security surveillance and health care, it suffers from tremendous constraints. In addition to the limitations of conventional WSNs, image processing on DWSCs requires more computational power, bandwidth and energy that presents significant challenges for large scale deployments. This dissertation has developed a number of algorithms that are highly scalable, portable, energy efficient and performance efficient, with considerations of practical constraints imposed by the hardware and the nature of WSN. More specifically, these algorithms tackle the problems of multi-object tracking and localisation in distributed wireless smart camera net- works and optimal camera configuration determination. Addressing the first problem of multi-object tracking and localisation requires solving a large array of sub-problems. The sub-problems that are discussed in this dissertation are calibration of internal parameters, multi-camera calibration for localisation and object handover for tracking. These topics have been covered extensively in computer vision literatures, however new algorithms must be invented to accommodate the various constraints introduced and required by the DWSC platform. A technique has been developed for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera internal parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera's optical centre and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. For object localisation, a novel approach has been developed for the calibration of a network of non-overlapping DWSCs in terms of their ground plane homographies, which can then be used for localising objects. In the proposed approach, a robot travels through the camera network while updating its position in a global coordinate frame, which it broadcasts to the cameras. The cameras use this, along with the image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to localised objects moving within the network. In addition, to deal with the problem of object handover between DWSCs of non-overlapping fields of view, a highly-scalable, distributed protocol has been designed. Cameras that follow the proposed protocol transmit object descriptions to a selected set of neighbours that are determined using a predictive forwarding strategy. The received descriptions are then matched at the subsequent camera on the object's path using a probability maximisation process with locally generated descriptions. The second problem of camera placement emerges naturally when these pervasive devices are put into real use. The locations, orientations, lens types etc. of the cameras must be chosen in a way that the utility of the network is maximised (e.g. maximum coverage) while user requirements are met. To deal with this, a statistical formulation of the problem of determining optimal camera configurations has been introduced and a Trans-Dimensional Simulated Annealing (TDSA) algorithm has been proposed to effectively solve the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable robotic perception and planning are critical to performing autonomous actions in uncertain, unstructured environments. In field robotic systems, automation is achieved by interpreting exteroceptive sensor information to infer something about the world. This is then mapped to provide a consistent spatial context, so that actions can be planned around the predicted future interaction of the robot and the world. The whole system is as reliable as the weakest link in this chain. In this paper, the term mapping is used broadly to describe the transformation of range-based exteroceptive sensor data (such as LIDAR or stereo vision) to a fixed navigation frame, so that it can be used to form an internal representation of the environment. The coordinate transformation from the sensor frame to the navigation frame is analyzed to produce a spatial error model that captures the dominant geometric and temporal sources of mapping error. This allows the mapping accuracy to be calculated at run time. A generic extrinsic calibration method for exteroceptive range-based sensors is then presented to determine the sensor location and orientation. This allows systematic errors in individual sensors to be minimized, and when multiple sensors are used, it minimizes the systematic contradiction between them to enable reliable multisensor data fusion. The mathematical derivations at the core of this model are not particularly novel or complicated, but the rigorous analysis and application to field robotics seems to be largely absent from the literature to date. The techniques in this paper are simple to implement, and they offer a significant improvement to the accuracy, precision, and integrity of mapped information. Consequently, they should be employed whenever maps are formed from range-based exteroceptive sensor data. © 2009 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates the fusion of 3D visual information with 2D image cues to provide 3D semantic maps of large-scale environments in which a robot traverses for robotic applications. A major theme of this thesis was to exploit the availability of 3D information acquired from robot sensors to improve upon 2D object classification alone. The proposed methods have been evaluated on several indoor and outdoor datasets collected from mobile robotic platforms including a quadcopter and ground vehicle covering several kilometres of urban roads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Describes the development and testing of a robotic system for charging blast holes in underground mining. The automation system supports four main tactical functions: detection of blast holes; teleoperated arm pose control; automatic arm pose control; and human-in-the-loop visual servoing. We present the system architecture, and analyse the major components, Hole detection is crucial for automating the process, and we discuss theoretical and practical aspects in detail. The sensors used are laser range finders and cameras installed in the end effector. For automatic insertion, we consider image processing techniques to support visual servoing the tool to the hole. We also discuss issues surrounding the control of heavy-duty mining manipulators, in particular, friction, stiction, and actuator saturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, the inspection of sea-going vessels is performed manually. Ship surveyors do a visual inspection; in some cases they also use cameras and non-destructive testing methods. Prior to a ship surveying process a lot of scaffolding has to be provided in order to make every spot accessible for the surveyor. In this work a robotic system is presented, which is able to access many areas of a cargo hold of a ship and perform visual inspection without any scaffolding. The paper also describes how the position of the acquired data is estimated with an optical 3D tracking unit and how critical points on the hull can be marked via a remote controlled marker device. Furthermore first results of onboard tests with the system are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large range of underground mining equipment makes use of compliant hydraulic arms for tasks such as rock-bolting, rock breaking, explosive charging and shotcreting. This paper describes a laboratory model electo-hydraulic manipulator which is used to prototype novel control and sensing techniques. The research is aimed at improving the safety and productivity of these mining tasks through automation, in particular the application of closed-loop visual positioning of the machine's end-effector.