356 resultados para Riley, Eric
Resumo:
Given the level of debate and theorising in Western thought on the topic of justice, it is curious that the concept of injustice has not attracted the same attention. While many schools of thought have sought to address various injustices, most define injustice solely as the opposite of their vision of a just society – it seems they have not been interested in exploring injustice per se. With this as a starting point, Eric Heinze’s The Concept of Injustice addresses this oversight and, by taking injustice itself as an object of analysis, adds a new dimension to these discussions...
Resumo:
Representation of Aborigines by Aborigines and non -Aborigines; articles by Andrew Dewdney, Mervyn Biship, Alana Harris, Sandy Edwards, Rea Saunders, Ricky Maynard , Brenda Croft, Ruth Braunstein, Michael Riley, Huw Davies, Penny Taylor, Darlene McKenzie, Kurt Brereton and Eric Michaels, annotated separately.
Resumo:
We generalize the classical notion of Vapnik–Chernovenkis (VC) dimension to ordinal VC-dimension, in the context of logical learning paradigms. Logical learning paradigms encompass the numerical learning paradigms commonly studied in Inductive Inference. A logical learning paradigm is defined as a set W of structures over some vocabulary, and a set D of first-order formulas that represent data. The sets of models of ϕ in W, where ϕ varies over D, generate a natural topology W over W. We show that if D is closed under boolean operators, then the notion of ordinal VC-dimension offers a perfect characterization for the problem of predicting the truth of the members of D in a member of W, with an ordinal bound on the number of mistakes. This shows that the notion of VC-dimension has a natural interpretation in Inductive Inference, when cast into a logical setting. We also study the relationships between predictive complexity, selective complexity—a variation on predictive complexity—and mind change complexity. The assumptions that D is closed under boolean operators and that W is compact often play a crucial role to establish connections between these concepts. We then consider a computable setting with effective versions of the complexity measures, and show that the equivalence between ordinal VC-dimension and predictive complexity fails. More precisely, we prove that the effective ordinal VC-dimension of a paradigm can be defined when all other effective notions of complexity are undefined. On a better note, when W is compact, all effective notions of complexity are defined, though they are not related as in the noncomputable version of the framework.
Resumo:
Single walled carbon nanotubes (SWNTs) were incorporated in polymer nanocomposites based on poly(3-octylthiophene) (P3OT), thermoplastic polyurethane (TPU) or a blend of them. Thermogravimetry demonstrated the success of the purification procedure employed in the chemical treatment of SWNTs prior to composite preparation. Stable dispersions of SWNTs in chloroform were obtained by non-covalent interactions with the dissolved polymers. Composites exhibited glass transitions, melting temperatures and heat of fusion which changed in relation to pure polymers. This behavior is discussed as associated to interactions between nanotubes and polymers. The conductivity at room temperature of the blend (TPU-P3OT) with SWNT is higher than the P3OT/SWNT composite.
Resumo:
The historical challenge of environmental impact assessment (EIA) has been to predict project-based impacts accurately. Both EIA legislation and the practice of EIA have evolved over the last three decades in Canada, and the development of the discipline and science of environmental assessment has improved how we apply environmental assessment to complex projects. The practice of environmental assessment integrates the social and natural sciences and relies on an eclectic knowledge base from a wide range of sources. EIA methods and tools provide a means to structure and integrate knowledge in order to evaluate and predict environmental impacts.----- This Chapter will provide a brief overview of how impacts are identified and predicted. How do we determine what aspect of the natural and social environment will be affected when a mine is excavated? How does the practitioner determine the range of potential impacts, assess whether they are significant, and predict the consequences? There are no standard answers to these questions, but there are established methods to provide a foundation for scoping and predicting the potential impacts of a project.----- Of course, the community and publics play an important role in this process, and this will be discussed in subsequent chapters. In the first part of this chapter, we will deal with impact identification, which involves appplying scoping to critical issues and determining impact significance, baseline ecosystem evaluation techniques, and how to communicate environmental impacts. In the second part of the chapter, we discuss the prediction of impacts in relation to the complexity of the environment, ecological risk assessment, and modelling.