16 resultados para Rhinoceros (Genus)
Resumo:
The timing and order of divergences within the genus Rattus have, to date, been quite speculative. In order to address these important issues we sequenced six new whole mitochondrial genomes from wild-caught specimens from four species, Rattus exulans, Rattus praetor, Rattus rattus and Rattus tanezumi. The only rat whole mitochondrial genomes available previously were all from Rattus norvegicus specimens. Our phylogenetic and dating analyses place the deepest divergence within Rattus at ∼3.5 million years ago (Mya). This divergence separates the New Guinean endemic R. praetor lineage from the Asian lineages. Within the Asian/Island Southeast Asian clade R. norvegicus diverged earliest at ∼2.9 Mya. R. exulans and the ancestor of the sister species R. rattus and R. tanezumi subsequently diverged at ∼2.2 Mya, with R. rattus and R. tanezumi separating as recently as ∼0.4 Mya. Our results give both a better resolved species divergence order and diversification dates within Rattus than previous studies.
Resumo:
To date, a molecular phylogenetic approach has not been used to investigate the evolutionary structure of Trogoderma and closely related genera. Using two mitochondrial genes, Cytochrome Oxidase I and Cytochrome B, and the nuclear gene, 18S, the reported polyphyletic positioning of Trogoderma was examined. Paraphyly in Trogoderma was observed, with one Australian Trogoderma species reconciled as sister to all Dermestidae and the Anthrenocerus genus deeply nested within the Australian Trogoderma clade. In addition, time to most recent common ancestor for a number of Dermestidae was calculated. Based on these estimations, the Dermestidae origin exceeded 175 million years, placing the origins of this family in Pangaea.
Resumo:
Currently there are ~3000 known species of Sarcophagidae (Diptera), which are classified into 173 genera in three subfamilies. Almost 25% of sarcophagids belong to the genus Sarcophaga (sensu lato) however little is known about the validity of, and relationships between the ~150 (or more) subgenera of Sarcophaga s.l. In this preliminary study, we evaluated the usefulness of three sources of data for resolving relationships between 35 species from 14 Sarcophaga s.l. subgenera: the mitochondrial COI barcode region, ~800. bp of the nuclear gene CAD, and 110 morphological characters. Bayesian, maximum likelihood (ML) and maximum parsimony (MP) analyses were performed on the combined dataset. Much of the tree was only supported by the Bayesian and ML analyses, with the MP tree poorly resolved. The genus Sarcophaga s.l. was resolved as monophyletic in both the Bayesian and ML analyses and strong support was obtained at the species-level. Notably, the only subgenus consistently resolved as monophyletic was Liopygia. The monophyly of and relationships between the remaining Sarcophaga s.l. subgenera sampled remain questionable. We suggest that future phylogenetic studies on the genus Sarcophaga s.l. use combined datasets for analyses. We also advocate the use of additional data and a range of inference strategies to assist with resolving relationships within Sarcophaga s.l.
Resumo:
Understanding the evolutionary history and phylogenetic relationships between rare and common species is necessary for the effective management of rare species. The genus Cherax, a group of freshwater crayfish species, is of interest in this regard as a number of species are rare or have restricted distributions while other species are common and widespread. Here we describe the characterisation of three novel nuclear genes of the haemocyanin superfamily for phylogenetic reconstruction of the genus. All novel markers developed in this study amplified consistently in species from three divergent clades of the genus Cherax. The level of polymorphism found in these markers was consistently higher than that found in other nuclear genes previously used in invertebrate systematics, such as NaK ATP-ase. In combination, these markers will be useful to delineate phylogenetic relationships between rare and common Cherax species.
Resumo:
The practical need to partition the world of viruses into distinguishable, universally agreed upon entities is the ultimate justification for developing a virus classification system. The Author of this Book is Andrew MQ King, Elliot Lefkowitz, Eric B. Carstens, Michael J. Adams Since 1971, the International Committee on Taxonomy of Viruses (ICTV) operating on behalf of the world community of virologists has taken on the task of developing a single, universal taxonomic scheme for all viruses infecting animals (vertebrate, invertebrates, and protozoa), plants (higher plants and algae), fungi, bacteria, and archaea.
Resumo:
Barbadocladius n. gen. is erected and described in larval, pupal and adult stages for two species: B. andinus sp. nov. and B. limay sp. nov., from Andean streams. The larva is distinctive by virtue of the very large ventromental 'beard' and the anterior parapods with a 'sleeve' of hooklets in addition to apical pectinate claws. The pupa has hooklets on some tergal and sternal intersegmental membranes. The adult, reported only in teneral specimens has hairy eyes, no antennal apical strong seta, no acrostichals, bare and unmarked wings, cylindrical 4th tarsomere subequal in length to the 5th, pulvilli about half the claw length, and hypopygium with anal point, lacking a virga. Molecular phylogenetic analysis eliminates relationships directly to the Eukiefferiella complex (which also have pupal hooklets), or to the Cricotopus group (adults also with hairy eyes), suggesting instead a sister group relationship to a suite of predominantly austral genera of Orthocladiinae.
Resumo:
The Australian species of the Orthocladiinae genus Cricotopus Wulp (Diptera: Chironomidae) are revised for larval, pupal, adult male and female life stages. Eleven species, ten of which are new, are recognised and keyed, namely Cricotopus acornis Drayson & Cranston sp. nov., Cricotopus albitarsis Hergstrom sp. nov., Cricotopus annuliventris (Skuse), Cricotopus brevicornis Drayson & Cranston sp. nov., Cricotopus conicornis Drayson & Cranston sp. nov., Cricotopus hillmani Drayson & Cranston, sp. nov., Cricotopus howensis Cranston sp. nov., Cricotopus parbicinctus Hergstrom sp. nov., Cricotopus tasmania Drayson & Cranston sp. nov., Cricotopus varicornis Drayson & Cranston sp. nov. and Cricotopus wangi Cranston & Krosch sp. nov. Using data from this study, we consider the wider utility of morphological and molecular diagnostic tools in untangling species diversity in the Chironomidae. Morphological support for distinguishing Cricotopus from Paratrichocladius Santo-Abreu in larval and pupal stages appears lacking for Australian taxa and brief notes are provided concerning this matter.
Resumo:
The informal taxon ‘genus Chile’ of Brundin, based solely on pupal exuviae of a podonomine Chironomidae, has remained inadequately known for half a century. New collections reveal life associations, and provide molecular data to hypothesise a precise phylogenetic placement in the austral Podonominae. A densely sampled molecular phylogeny based on two nuclear and one mitochondrial DNA markers shows ‘genus Chile’ to be the sister group to Podonomopsis Brundin, 1966. Within Podonomopsis a clade of South American species is sister to all Australian species. We discuss how to rank such a sister group taxon and treat ‘genus Chile’ as a new subgenus Araucanopsis, subg. nov. with the new species, Podonomopsis (Araucanopsis) avelasse, sp. nov. from Chile and Argentina as genotype of the monotypic subgenus. We describe P. (A.) avelasse in all stages and provide an expanded diagnosis and description of Podonomopsis to include Araucanopsis. A dated biogeographic hypothesis (chronogram) infers the most recent common ancestor (tmcra) of expanded Podonomopsis at 95 million years ago (Mya) (68–122 Mya 95% highest posterior density), ‘core’ Podonomopsis at 83 Mya (58–108) and Australian Podonomopsis at 65 Mya (44–87). All dates are before the South America–Australia geological separation through Antarctica, supporting previous conclusions that the taxon distribution is ‘Gondwanan’ in origin. Podonomopsis, even as expanded here, remains unknown from New Zealand or elsewhere on extant Zealandia.
Resumo:
Cherax quadricarinatus (Redclaw), C. destructor (Yabby) and C. cainii (Marron) are a group of economically important freshwater crayfish and have been developed for aquaculture production in many countries. As crayfish are farmed in a wide range of culture conditions, optimisation of water quality parameters, are crucial for their maximum growth performance. Previous reports have shown that fluctuations in water quality can negatively impact on growth of crayfish. Therefore, this project aims to identify and characterize the major genes that enable freshwater crayfish to persist in different water chemistries and evaluate their patterns of expression under different water parameters. Overall, this project found a number of candidate genes in all three species and determined that water chemistry had a strong influence on the expression of candidate genes. This information is important in the optimization of water quality parameters in freshwater crayfish aquaculture production.