66 resultados para Red-rumped Cacique
Resumo:
This paper presents a new method of eye localisation and face segmentation for use in a face recognition system. By using two near infrared light sources, we have shown that the face can be coarsely segmented, and the eyes can be accurately located, increasing the accuracy of the face localisation and improving the overall speed of the system. The system is able to locate both eyes within 25% of the eye-to-eye distance in over 96% of test cases.
Resumo:
The effectiveness of using thermally activated hydrotalcite materials has been investigated for the removal of arsenate, vanadate, and molybdate in individual and mixed solutions. Results show that increasing the Mg,Al ratio to 4:1 causes an increase in the percentage of anions removed from solution. The order of affinity of the three anions analysed in this investigation is arsenate, vanadate, and molybdate. By comparisons with several synthetic hydrotalcite materials, the hydrotalcite structure in the seawater neutralised red mud (SWN-RM) has been determined to consist of magnesium and aluminium with a ratio between 3.5:1 and 4:1. Thermally activated seawater neutralised red mud removes at least twice the concentration of anionic species than thermally activated red mud alone, due to the formation of 40 to 60 % Bayer hydrotalcite during the neutralisation process.
Resumo:
Background: There is limited information on the effect of isoflavones on homocysteine concentrations, a risk factor for a number of chronic diseases. Methods: Twenty-three premenopausal women participated in a double-blind, randomized, parallel study for four menstrual cycles. Subjects consumed either placebo or purified red clover (Trifolium pratense) isoflavone (86mg/day) tablets. Blood samples were collected weekly during cycles 1, 3, and 4 for determination of serum folate and total homocysteine concentrations. Dietary intake was monitored monthly. Results: Concentrations of folate and homocysteine in serum did not change significantly in either group, and there were no significant differences observed between the follicular and luteal phases of the menstrual cycle. The participants' dietary records indicated that nutrient intake was constant, and compliance was confirmed by analysis of urinary isoflavone concentrations and tablet counts in returned containers. Conclusions: These results suggest that in the absence of any dietary modification, supplementation with purified isoflavones that are predominantly methoxylated has no effect on serum homocysteine or folate in premenopausal women.
Resumo:
Red light cameras (RLCs) have been used in a number of US cities to yield a demonstrable reduction in red light violations; however, evaluating their impact on safety (crashes) has been relatively more difficult. Accurately estimating the safety impacts of RLCs is challenging for several reasons. First, many safety related factors are uncontrolled and/or confounded during the periods of observation. Second, “spillover” effects caused by drivers reacting to non-RLC equipped intersections and approaches can make the selection of comparison sites difficult. Third, sites selected for RLC installation may not be selected randomly, and as a result may suffer from the regression to the mean bias. Finally, crash severity and resulting costs need to be considered in order to fully understand the safety impacts of RLCs. Recognizing these challenges, a study was conducted to estimate the safety impacts of RLCs on traffic crashes at signalized intersections in the cities of Phoenix and Scottsdale, Arizona. Twenty-four RLC equipped intersections in both cities are examined in detail and conclusions are drawn. Four different evaluation methodologies were employed to cope with the technical challenges described in this paper and to assess the sensitivity of results based on analytical assumptions. The evaluation results indicated that both Phoenix and Scottsdale are operating cost-effective installations of RLCs: however, the variability in RLC effectiveness within jurisdictions is larger in Phoenix. Consistent with findings in other regions, angle and left-turn crashes are reduced in general, while rear-end crashes tend to increase as a result of RLCs.
Resumo:
Impedance cardiography is an application of bioimpedance analysis primarily used in a research setting to determine cardiac output. It is a non invasive technique that measures the change in the impedance of the thorax which is attributed to the ejection of a volume of blood from the heart. The cardiac output is calculated from the measured impedance using the parallel conductor theory and a constant value for the resistivity of blood. However, the resistivity of blood has been shown to be velocity dependent due to changes in the orientation of red blood cells induced by changing shear forces during flow. The overall goal of this thesis was to study the effect that flow deviations have on the electrical impedance of blood, both experimentally and theoretically, and to apply the results to a clinical setting. The resistivity of stationary blood is isotropic as the red blood cells are randomly orientated due to Brownian motion. In the case of blood flowing through rigid tubes, the resistivity is anisotropic due to the biconcave discoidal shape and orientation of the cells. The generation of shear forces across the width of the tube during flow causes the cells to align with the minimal cross sectional area facing the direction of flow. This is in order to minimise the shear stress experienced by the cells. This in turn results in a larger cross sectional area of plasma and a reduction in the resistivity of the blood as the flow increases. Understanding the contribution of this effect on the thoracic impedance change is a vital step in achieving clinical acceptance of impedance cardiography. Published literature investigates the resistivity variations for constant blood flow. In this case, the shear forces are constant and the impedance remains constant during flow at a magnitude which is less than that for stationary blood. The research presented in this thesis, however, investigates the variations in resistivity of blood during pulsataile flow through rigid tubes and the relationship between impedance, velocity and acceleration. Using rigid tubes isolates the impedance change to variations associated with changes in cell orientation only. The implications of red blood cell orientation changes for clinical impedance cardiography were also explored. This was achieved through measurement and analysis of the experimental impedance of pulsatile blood flowing through rigid tubes in a mock circulatory system. A novel theoretical model including cell orientation dynamics was developed for the impedance of pulsatile blood through rigid tubes. The impedance of flowing blood was theoretically calculated using analytical methods for flow through straight tubes and the numerical Lattice Boltzmann method for flow through complex geometries such as aortic valve stenosis. The result of the analytical theoretical model was compared to the experimental impedance measurements through rigid tubes. The impedance calculated for flow through a stenosis using the Lattice Boltzmann method provides results for comparison with impedance cardiography measurements collected as part of a pilot clinical trial to assess the suitability of using bioimpedance techniques to assess the presence of aortic stenosis. The experimental and theoretical impedance of blood was shown to inversely follow the blood velocity during pulsatile flow with a correlation of -0.72 and -0.74 respectively. The results for both the experimental and theoretical investigations demonstrate that the acceleration of the blood is an important factor in determining the impedance, in addition to the velocity. During acceleration, the relationship between impedance and velocity is linear (r2 = 0.98, experimental and r2 = 0.94, theoretical). The relationship between the impedance and velocity during the deceleration phase is characterised by a time decay constant, ô , ranging from 10 to 50 s. The high level of agreement between the experimental and theoretically modelled impedance demonstrates the accuracy of the model developed here. An increase in the haematocrit of the blood resulted in an increase in the magnitude of the impedance change due to changes in the orientation of red blood cells. The time decay constant was shown to decrease linearly with the haematocrit for both experimental and theoretical results, although the slope of this decrease was larger in the experimental case. The radius of the tube influences the experimental and theoretical impedance given the same velocity of flow. However, when the velocity was divided by the radius of the tube (labelled the reduced average velocity) the impedance response was the same for two experimental tubes with equivalent reduced average velocity but with different radii. The temperature of the blood was also shown to affect the impedance with the impedance decreasing as the temperature increased. These results are the first published for the impedance of pulsatile blood. The experimental impedance change measured orthogonal to the direction of flow is in the opposite direction to that measured in the direction of flow. These results indicate that the impedance of blood flowing through rigid cylindrical tubes is axisymmetric along the radius. This has not previously been verified experimentally. Time frequency analysis of the experimental results demonstrated that the measured impedance contains the same frequency components occuring at the same time point in the cycle as the velocity signal contains. This suggests that the impedance contains many of the fluctuations of the velocity signal. Application of a theoretical steady flow model to pulsatile flow presented here has verified that the steady flow model is not adequate in calculating the impedance of pulsatile blood flow. The success of the new theoretical model over the steady flow model demonstrates that the velocity profile is important in determining the impedance of pulsatile blood. The clinical application of the impedance of blood flow through a stenosis was theoretically modelled using the Lattice Boltzman method (LBM) for fluid flow through complex geometeries. The impedance of blood exiting a narrow orifice was calculated for varying degrees of stenosis. Clincial impedance cardiography measurements were also recorded for both aortic valvular stenosis patients (n = 4) and control subjects (n = 4) with structurally normal hearts. This pilot trial was used to corroborate the results of the LBM. Results from both investigations showed that the decay time constant for impedance has potential in the assessment of aortic valve stenosis. In the theoretically modelled case (LBM results), the decay time constant increased with an increase in the degree of stenosis. The clinical results also showed a statistically significant difference in time decay constant between control and test subjects (P = 0.03). The time decay constant calculated for test subjects (ô = 180 - 250 s) is consistently larger than that determined for control subjects (ô = 50 - 130 s). This difference is thought to be due to difference in the orientation response of the cells as blood flows through the stenosis. Such a non-invasive technique using the time decay constant for screening of aortic stenosis provides additional information to that currently given by impedance cardiography techniques and improves the value of the device to practitioners. However, the results still need to be verified in a larger study. While impedance cardiography has not been widely adopted clinically, it is research such as this that will enable future acceptance of the method.