80 resultados para Recombinant Antigen
Resumo:
Over the past decade, plants have been used as expression hosts for the production of pharmaceutically important and commercially valuable proteins. Plants offer many advantages over other expression systems such as lower production costs, rapid scale up of production, similar post-translational modification as animals and the low likelihood of contamination with animal pathogens, microbial toxins or oncogenic sequences. However, improving recombinant protein yield remains one of the greatest challenges to molecular farming. In-Plant Activation (InPAct) is a newly developed technology that offers activatable and high-level expression of heterologous proteins in plants. InPAct vectors contain the geminivirus cis elements essential for rolling circle replication (RCR) and are arranged such that the gene of interest is only expressed in the presence of the cognate viral replication-associated protein (Rep). The expression of Rep in planta may be controlled by a tissue-specific, developmentally regulated or chemically inducible promoter such that heterologous protein accumulation can be spatially and temporally controlled. One of the challenges for the successful exploitation of InPAct technology is the control of Rep expression as even very low levels of this protein can reduce transformation efficiency, cause abnormal phenotypes and premature activation of the InPAct vector in regenerated plants. Tight regulation over transgene expression is also essential if expressing cytotoxic products. Unfortunately, many tissue-specific and inducible promoters are unsuitable for controlling expression of Rep due to low basal activity in the absence of inducer or in tissues other than the target tissue. This PhD aimed to control Rep activity through the production of single chain variable fragments (scFvs) specific to the motif III of Tobacco yellow dwarf virus (TbYDV) Rep. Due to the important role played by the conserved motif III in the RCR, it was postulated that such scFvs can be used to neutralise the activity of the low amount of Rep expressed from a “leaky” inducible promoter, thus preventing activation of the TbYDV-based InPAct vector until intentional induction. Such scFvs could also offer the potential to confer partial or complete resistance to TbYDV, and possibly heterologous viruses as motif III is conserved between geminiviruses. Studies were first undertaken to determine the levels of TbYDV Rep and TbYDV replication-associated protein A (RepA) required for optimal transgene expression from a TbYDV-based InPAct vector. Transient assays in a non-regenerable Nicotiana tabacum (NT-1) cell line were undertaken using a TbYDV-based InPAct vector containing the uidA reporter gene (encoding GUS) in combination with TbYDV Rep and RepA under the control of promoters with high (CaMV 35S) or low (Banana bunchy top virus DNA-R, BT1) activity. The replication enhancer protein of Tomato leaf curl begomovirus (ToLCV), REn, was also used in some co-bombardment experiments to examine whether RepA could be substituted by a replication enhancer from another geminivirus genus. GUS expression was observed both quantitatively and qualitatively by fluorometric and histochemical assays, respectively. GUS expression from the TbYDV-based InPAct vector was found to be greater when Rep was expected to be expressed at low levels (BT1 promoter) rather than high levels (35S promoter). GUS expression was further enhanced when Rep and RepA were co-bombarded with a low ratio of Rep to RepA. Substituting TbYDV RepA with ToLCV REn also enhanced GUS expression but more importantly highest GUS expression was observed when cells were co-transformed with expression vectors directing low levels of Rep and high levels of RepA irrespective of the level of REn. In this case, GUS expression was approximately 74-fold higher than that from a non-replicating vector. The use of different terminators, namely CaMV 35S and Nos terminators, in InPAct vectors was found to influence GUS expression. In the presence of Rep, GUS expression was greater using pInPActGUS-Nos rather than pInPActGUS-35S. The only instance of GUS expression being greater from vectors containing the 35S terminator was when comparing expression from cells transformed with Rep, RepA and REnexpressing vectors and either non-replicating vectors, p35SGS-Nos or p35SGS-35S. This difference was most likely caused by an interaction of viral replication proteins with each other and the terminators. These results indicated that (i) the level of replication associated proteins is critical to high transgene expression, (ii) the choice of terminator within the InPAct vector may affect expression levels and (iii) very low levels of Rep can activate InPAct vectors hence controlling its activity is critical. Prior to generating recombinant scFvs, a recombinant TbYDV Rep was produced in E. coli to act as a control to enable the screening for Rep-specific antibodies. A bacterial expression vector was constructed to express recombinant TbYDV Rep with an Nterminal His-tag (N-His-Rep). Despite investigating several purification techniques including Ni-NTA, anion exchange, hydrophobic interaction and size exclusion chromatography, N-His-Rep could only be partially purified using a Ni-NTA column under native conditions. Although it was not certain that this recombinant N-His-Rep had the same conformation as the native TbYDV Rep and was functional, results from an electromobility shift assay (EMSA) showed that N-His-Rep was able to interact with the TbYDV LIR and was, therefore, possibly functional. Two hybridoma cell lines from mice, immunised with a synthetic peptide containing the TbYDV Rep motif III amino acid sequence, were generated by GenScript (USA). Monoclonal antibodies secreted by the two hybridoma cell lines were first screened against denatured N-His-Rep in Western analysis. After demonstrating their ability to bind N-His-Rep, two scFvs (scFv1 and scFv2) were generated using a PCR-based approach. Whereas the variable heavy chain (VH) from both cell lines could be amplified, only the variable light chain (VL) from cell line 2 was amplified. As a result, scFv1 contained VH and VL from cell line 1, whereas scFv2 contained VH from cell line 2 and VL from cell line 1. Both scFvs were first expressed in E. coli in order to evaluate their affinity to the recombinant TbYDV N-His-Rep. The preliminary results demonstrated that both scFvs were able to bind to the denatured N-His-Rep. However, EMSAs revealed that only scFv2 was able to bind to native N-His-Rep and prevent it from interacting with the TbYDV LIR. Each scFv was cloned into plant expression vectors and co-bombarded into NT-1 cells with the TbYDV-based InPAct GUS expression vector and pBT1-Rep to examine whether the scFvs could prevent Rep from mediating RCR. Although it was expected that the addition of the scFvs would result in decreased GUS expression, GUS expression was found to slightly increase. This increase was even more pronounced when the scFvs were targeted to the cell nucleus by the inclusion of the Simian virus 40 large T antigen (SV40) nuclear localisation signal (NLS). It was postulated that the scFvs were binding to a proportion of Rep, leaving a small amount available to mediate RCR. The outcomes of this project provide evidence that very high levels of recombinant protein can theoretically be expressed using InPAct vectors with judicious selection and control of viral replication proteins. However, the question of whether the scFvs generated in this project have sufficient affinity for TbYDV Rep to prevent its activity in a stably transformed plant remains unknown. It may be that other scFvs with different combinations of VH and VL may have greater affinity for TbYDV Rep. Such scFvs, when expressed at high levels in planta, might also confer resistance to TbYDV and possibly heterologous geminiviruses.
Resumo:
Chlamydial infections are wide spread in koalas across their range and a solution to this debilitating disease has been sought for over a decade. Antibiotics are the currently accepted therapeutic measure, but are not an effective treatment due to the asymptomatic nature of some infections and a low efficacy rate. Thus, a vaccine would be an ideal way to address this infectious disease threat in the wild. Previous vaccine trials have used a three-dose regimen; however this is very difficult to apply in the field as it would require multiple capture events, which are stressful and invasive processes for the koala. In addition, it requires skilled koala handlers and a significant monetary investment. To overcome these challenges, in this study we utilized a polyphosphazine based poly I:C and a host defense peptide adjuvant combined with recombinant chlamydial major outer membrane protein (rMOMP) antigen to induce long lasting (54 weeks) cellular and humoral immunity in female koalas with a novel single immunizing dose. Immunized koalas produced a strong IgG response in plasma, as well as at mucosal sites. Moreover, they showed high levels of C. pecorum specific neutralizing antibodies in the plasma as well as vaginal and conjunctival secretions. Lastly, Chlamydia-specific lymphocyte proliferation responses were produced against both whole chlamydial elementary bodies and rMOMP protein, over the 12-month period. The results of this study suggest that a single dose rMOMP vaccine incorporating a poly I:C, host defense peptide and polyphosphazine adjuvant is able to stimulate both arms of the immune system in koalas, thereby providing an alternative to antibiotic treatment and/or a three-dose vaccine regime.
Resumo:
The notion of recombinant architecture signals a loosening of spatial connections between physical and digital-online environments (Mitchell, 1996; 2000; 2003). Such an idea also points to the transformative nature of the designing approaches concerned with the creation of spaces where bits meet bodies to fulfil human needs and desires and, at the same time, pursuing those human dimensions of space and place which are so important to our senses of belonging, physical comfort and amenity. This paper proposes that recombinant spaces and places draw on familiar architectural forms and functions and on the transforming functions of digital-online modes. Perspectives, approaches and resources outlined in the paper support designing and re-designing enterprises and aim to stimulate discussion in the Digital Environments strand of this online conference: 'Under Construction: a world without walls'.
Resumo:
First-degree relatives of men with prostate cancer have a higher risk of being diagnosed with prostate cancer than men without a family history. The present review examines the prevalence and predictors of testing in first-degree relatives, perceptions of risk, prostate cancer knowledge and psychological consequences of screening. Medline, PsycInfo and Cinahl databases were searched for articles examining risk perceptions or screening practices of first-degree relatives of men with prostate cancer for the period of 1990 to August 2007. Eighteen studies were eligible for inclusion. First-degree relatives participated in prostate-specific antigen (PSA) testing more and perceived their risk of prostate cancer to be higher than men without a family history. Family history factors (e.g. being an unaffected son rather than an unaffected brother) were consistent predictors of PSA testing. Studies were characterized by sampling biases and a lack of longitudinal assessments. Prospective, longitudinal assessments with well-validated and comprehensive measures are needed to identify factors that cue the uptake of screening and from this develop an evidence base for decision support. Men with a family history may benefit from targeted communication about the risks and benefits of prostate cancer testing that responds to the implications of their heightened risk.
Resumo:
Plants have been identified as promising expression systems for the commercial production of recombinant proteins. Plant-based protein production or “biofarming” offers a number of advantages over traditional expression systems in terms of scale of production, the capacity for post-translation processing, providing a product free of contaminants and cost effectiveness. A number of pharmaceutically important and commercially valuable proteins, such as antibodies, biopharmaceuticals and industrial enzymes are currently being produced in plant expression systems. However, several challenges still remain to improve recombinant protein yield with no ill effect on the host plant. The ability for transgenic plants to produce foreign proteins at commercially viable levels can be directly related to the level and cell specificity of the selected promoter driving the transgene. The accumulation of recombinant proteins may be controlled by a tissue-specific, developmentally-regulated or chemically-inducible promoter such that expression of recombinant proteins can be spatially- or temporally- controlled. The strict control of gene expression is particularly useful for proteins that are considered toxic and whose expression is likely to have a detrimental effect on plant growth. To date, the most commonly used promoter in plant biotechnology is the cauliflower mosaic virus (CaMV) 35S promoter which is used to drive strong, constitutive transgene expression in most organs of transgenic plants. Of particular interest to researchers in the Centre for Tropical Crops and Biocommodities at QUT are tissue-specific promoters for the accumulation of foreign proteins in the roots, seeds and fruit of various plant species, including tobacco, banana and sugarcane. Therefore this Masters project aimed to isolate and characterise root- and seed-specific promoters for the control of genes encoding recombinant proteins in plant-based expression systems. Additionally, the effects of matching cognate terminators with their respective gene promoters were assessed. The Arabidopsis root promoters ARSK1 and EIR1 were selected from the literature based on their reported limited root expression profiles. Both promoters were analysed using the PlantCARE database to identify putative motifs or cis-acting elements that may be associated with this activity. A number of motifs were identified in the ARSK1 promoter region including, WUN (wound-inducible), MBS (MYB binding site), Skn-1, and a RY core element (seed-specific) and in the EIR1 promoter region including, Skn-1 (seed-specific), Box-W1 (fungal elicitor), Aux-RR core (auxin response) and ABRE (ABA response). However, no previously reported root-specific cis-acting elements were observed in either promoter region. To confirm root specificity, both promoters, and truncated versions, were fused to the GUS reporter gene and the expression cassette introduced into Arabidopsis via Agrobacterium-mediated transformation. Despite the reported tissue-specific nature of these promoters, both upstream regulatory regions directed constitutive GUS expression in all transgenic plants. Further, similar levels of GUS expression from the ARSK1 promoter were directed by the control CaMV 35S promoter. The truncated version of the EIR1 promoter (1.2 Kb) showed some differences in the level of GUS expression compared to the 2.2 Kb promoter. Therefore, this suggests an enhancer element is contained in the 2.2 Kb upstream region that increases transgene expression. The Arabidopsis seed-specific genes ATS1 and ATS3 were selected from the literature based on their seed-specific expression profiles and gene expression confirmed in this study as seed-specific by RT-PCR analysis. The selected promoter regions were analysed using the PlantCARE database in order to identify any putative cis elements. The seed-specific motifs GCN4 and Skn-1 were identified in both promoter regions that are associated with elevated expression levels in the endosperm. Additionaly, the seed-specific RY element and the ABRE were located in the ATS1 promoter. Both promoters were fused to the GUS reporter gene and used to transform Arabidopsis plants. GUS expression from the putative promoters was consitutive in all transgenic Arabidopsis tissue tested. Importantly, the positive control FAE1 seed-specific promoter also directed constitutive GUS expression throughout transgenic Arabidopsis plants. The constitutive nature seen in all of the promoters used in this study was not anticipated. While variations in promoter activity can be caused by a number of influencing factors, the variation in promoter activity observed here would imply a major contributing factor common to all plant expression cassettes tested. All promoter constructs generated in this study were based on the binary vector pCAMBIA2300. This vector contains the plant selection gene (NPTII) under the transcriptional control of the duplicated CaMV 35S promoter. This CaMV 35S promoter contains two enhancer domains that confer strong, constitutive expression of the selection gene and is located immediately upstream of the promoter-GUS fusion. During the course of this project, Yoo et al. (2005) reported that transgene expression is significantly affected when the expression cassette is located on the same T-DNA as the 35S enhancer. It was concluded, the trans-acting effects of the enhancer activate and control transgene expression causing irregular expression patterns. This phenomenon seems the most plausible reason for the constitutive expression profiles observed with the root- and seed-specific promoters assessed in this study. The expression from some promoters can be influenced by their cognate terminator sequences. Therefore, the Arabidopsis ARSK1, EIR1, ATS1 and ATS3 terminator sequences were isolated and incorporated into expression cassettes containing the GUS reporter gene under the control of their cognate promoters. Again, unrestricted GUS activity was displayed throughout transgenic plants transformed with these reporter gene fusions. As previously discussed constitutive GUS expression was most likely due to the trans-acting effect of the upstream CaMV 35S promoter in the selection cassette located on the same T-DNA. The results obtained in this study make it impossible to assess the influence matching terminators with their cognate promoters have on transgene expression profiles. The obvious future direction of research continuing from this study would be to transform pBIN-based promoter-GUS fusions (ie. constructs containing no CaMV 35S promoter driving the plant selection gene) into Arabidopsis in order to determine the true tissue specificity of these promoters and evaluate the effects of their cognate 3’ terminator sequences. Further, promoter truncations based around the cis-elements identified here may assist in determining whether these motifs are in fact involved in the overall activity of the promoter.
Resumo:
Dasheen mosaic potyvirus (DsMV) is an important virus affecting taro. The virus has been found wherever taro is grown and infects both the edible and ornamental aroids, causing yield losses of up to 60%. The presence of DsMV, and other viruses,prevents the international movement of taro germplasm between countries. This has a significant negative impact on taro production in many countries due to the inability to access improved taro lines produced in breeding programs. To overcome this problem, sensitive and reliable virus diagnostic tests need to be developed to enable the indexing of taro germplasm. The aim of this study was to generate an antiserum against a recombinant DsMV coat protein (CP) and to develop a serological-based diagnostic test that would detect Pacific Island isolates of the virus. The CP-coding region of 16 DsMV isolates from Papua New Guinea, Samoa, Solomon Islands, French Polynesia, New Caledonia and Vietnam were amplified,cloned and sequenced. The size of the CP-coding region ranged from 939 to 1038 nucleotides and encoded putative proteins ranged from 313 to 346 amino acids, with the molecular mass ranging from 34 to 38 kDa. Analysis ofthe amino acid sequences revealed the presence of several amino acid motifs typically found in potyviruses,including DAG, WCIE/DN, RQ and AFDF. When the amino acid sequences were compared with each other and the DsMV sequences on the database, the maximum variability was21.9%. When the core region ofthe CP was analysed, the maximum variability dropped to 6% indicating most variability was present in the N terminus. Within seven PNG isolates ofDsMV, the maximum variability was 16.9% and 3.9% over the entire CP-coding region and core region, respectively. The sequence ofPNG isolate P1 was most similar to all other sequences. Phylogenetic analysis indicated that almost all isolates grouped according to their provenance. Further, the seven PNG isolates were grouped according to the region within PNG from which they were obtained. Due to the extensive variability over the entire CP-coding region, the core region ofthe CP ofPNG isolate Pl was cloned into a protein expression vector and expressed as a recombinant protein. The protein was purified by chromatography and SDS-PAGE and used as an antigen to generate antiserum in a rabbit. In western blots, the antiserum reacted with bands of approximately 45-47 kDa in extracts from purified DsMV and from known DsMV -infected plants from PNG; no bands were observed using healthy plant extracts. The antiserum was subsequently incorporated into an indirect ELISA. This procedure was found to be very sensitive and detected DsMV in sap diluted at least 1:1,000. Using both western blot and ELISA formats,the antiserum was able to detect a wide range ofDsMV isolates including those from Australia, New Zealand, Fiji, French Polynesia, New Caledonia, Papua New Guinea, Samoa, Solomon Islands and Vanuatu. These plants were verified to be infected with DsMV by RT-PCR. In specificity tests, the antiserum was also found to react with sap from plants infected with SCMV, PRSV-P, PRSV-W, but not with PVY or CMV -infected plants.
Resumo:
Prostate cancer is an important male health issue. The strategies used to diagnose and treat prostate cancer underscore the cell and molecular interactions that promote disease progression. Prostate cancer is histologically defined by increasingly undifferentiated tumour cells and therapeutically targeted by androgen ablation. Even as the normal glandular architecture of the adult prostate is lost, prostate cancer cells remain dependent on the androgen receptor (AR) for growth and survival. This project focused on androgen-regulated gene expression, altered cellular differentiation, and the nexus between these two concepts. The AR controls prostate development, homeostasis and cancer progression by regulating the expression of downstream genes. Kallikrein-related serine peptidases are prominent transcriptional targets of AR in the adult prostate. Kallikrein 3 (KLK3), which is commonly referred to as prostate-specific antigen, is the current serum biomarker for prostate cancer. Other kallikreins are potential adjunct biomarkers. As secreted proteases, kallikreins act through enzyme cascades that may modulate the prostate cancer microenvironment. Both as a panel of biomarkers and cascade of proteases, the roles of kallikreins are interconnected. Yet the expression and regulation of different kallikreins in prostate cancer has not been compared. In this study, a spectrum of prostate cell lines was used to evaluate the expression profile of all 15 members of the kallikrein family. A cluster of genes was co-ordinately expressed in androgenresponsive cell lines. This group of kallikreins included KLK2, 3, 4 and 15, which are located adjacent to one another at the centromeric end of the kallikrein locus. KLK14 was also of interest, because it was ubiquitously expressed among the prostate cell lines. Immunohistochemistry showed that these 5 kallikreins are co-expressed in benign and malignant prostate tissue. The androgen-regulated expression of KLK2 and KLK3 is well-characterised, but has not been compared with other kallikreins. Therefore, KLK2, 3, 4, 14 and 15 expression were all measured in time course and dose response experiments with androgens, AR-antagonist treatments, hormone deprivation experiments and cells transfected with AR siRNA. Collectively, these experiments demonstrated that prostatic kallikreins are specifically and directly regulated by the AR. The data also revealed that kallikrein genes are differentially regulated by androgens; KLK2 and KLK3 were strongly up-regulated, KLK4 and KLK15 were modestly up-regulated, and KLK14 was repressed. Notably, KLK14 is located at the telomeric end of the kallikrein locus, far away from the centromeric cluster of kallikreins that are stimulated by androgens. These results show that the expression of KLK2, 3, 4, 14 and 15 is maintained in prostate cancer, but that these genes exhibit different responses to androgens. This makes the kallikrein locus an ideal model to investigate AR signalling. The increasingly dedifferentiated phenotype of aggressive prostate cancer cells is accompanied by the re-expression of signalling molecules that are usually expressed during embryogenesis and foetal tissue development. The Wnt pathway is one developmental cascade that is reactivated in prostate cancer. The canonical Wnt cascade regulates the intracellular levels of β-catenin, a potent transcriptional co-activator of T-cell factor (TCF) transcription factors. Notably, β-catenin can also bind to the AR and synergistically stimulate androgen-mediated gene expression. This is at the expense of typical Wnt/TCF target genes, because the AR:β-catenin and TCF:β-catenin interactions are mutually exclusive. The effect of β-catenin on kallikrein expression was examined to further investigate the role of β-catenin in prostate cancer. Stable knockdown of β-catenin in LNCaP prostate cancer cells attenuated the androgen-regulated expression of KLK2, 3, 4 and 15, but not KLK14. To test whether KLK14 is instead a TCF:β-catenin target gene, the endogenous levels of β-catenin were increased by inhibiting its degradation. Although KLK14 expression was up-regulated by these treatments, siRNA knockdown of β-catenin demonstrated that this effect was independent of β-catenin. These results show that β-catenin is required for maximal expression of KLK2, 3, 4 and 15, but not KLK14. Developmental cells and tumour cells express a similar repertoire of signalling molecules, which means that these different cell types are responsive to one another. Previous reports have shown that stem cells and foetal tissues can reprogram aggressive cancer cells to less aggressive phenotypes by restoring the balance to developmental signalling pathways that are highly dysregulated in cancer. To investigate this phenomenon in prostate cancer, DU145 and PC-3 prostate cancer cells were cultured on matrices pre-conditioned with human embryonic stem cells (hESCs). Soft agar assays showed that prostate cancer cells exposed to hESC conditioned matrices had reduced clonogenicity compared with cells harvested from control matrices. A recent study demonstrated that this effect was partially due to hESC-derived Lefty, an antagonist of Nodal. A member of the transforming growth factor β (TGFβ) superfamily, Nodal regulates embryogenesis and is re-expressed in cancer. The role of Nodal in prostate cancer has not previously been reported. Therefore, the expression and function of the Nodal signalling pathway in prostate cancer was investigated. Western blots confirmed that Nodal is expressed in DU145 and PC-3 cells. Immunohistochemistry revealed greater expression of Nodal in malignant versus benign glands. Notably, the Nodal inhibitor, Lefty, was not expressed at the mRNA level in any prostate cell lines tested. The Nodal signalling pathway is functionally active in prostate cancer cells. Recombinant Nodal treatments triggered downstream phosphorylation of Smad2 in DU145 and LNCaP cells, and stably-transfected Nodal increased the clonogencity of LNCaP cells. Nodal was also found to modulate AR signalling. Nodal reduced the activity of an androgen-regulated KLK3 promoter construct in luciferase assays and attenuated the endogenous expression of AR target genes including prostatic kallikreins. These results demonstrate that Nodal is a novel example of a developmental signalling molecule that is reexpressed in prostate cancer and may have a functional role in prostate cancer progression. In summary, this project clarifies the role of androgens and changing cellular differentiation in prostate cancer by characterising the expression and function of the downstream genes encoding kallikrein-related serine proteases and Nodal. Furthermore, this study emphasises the similarities between prostate cancer and early development, and the crosstalk between developmental signalling pathways and the AR axis. The outcomes of this project also affirm the utility of the kallikrein locus as a model system to monitor tumour progression and the phenotype of prostate cancer cells.