187 resultados para Realized volatility
Resumo:
This paper examines the relationship between the volatility implied in option prices and the subsequently realized volatility by using the S&P/ASX 200 index options (XJO) traded on the Australian Stock Exchange (ASX) during a period of 5 years. Unlike stock index options such as the S&P 100 index options in the US market, the S&P/ASX 200 index options are traded infrequently and in low volumes, and have a long maturity cycle. Thus an errors-in-variables problem for measurement of implied volatility is more likely to exist. After accounting for this problem by instrumental variable method, it is found that both call and put implied volatilities are superior to historical volatility in forecasting future realized volatility. Moreover, implied call volatility is nearly an unbiased forecast of future volatility.
Resumo:
Forecasts generated by time series models traditionally place greater weight on more recent observations. This paper develops an alternative semi-parametric method for forecasting that does not rely on this convention and applies it to the problem of forecasting asset return volatility. In this approach, a forecast is a weighted average of historical volatility, with the greatest weight given to periods that exhibit similar market conditions to the time at which the forecast is being formed. Weighting is determined by comparing short-term trends in volatility across time (as a measure of market conditions) by means of a multivariate kernel scheme. It is found that the semi-parametric method produces forecasts that are significantly more accurate than a number of competing approaches at both short and long forecast horizons.
Resumo:
Recent literature has focused on realized volatility models to predict financial risk. This paper studies the benefit of explicitly modeling jumps in this class of models for value at risk (VaR) prediction. Several popular realized volatility models are compared in terms of their VaR forecasting performances through a Monte Carlo study and an analysis based on empirical data of eight Chinese stocks. The results suggest that careful modeling of jumps in realized volatility models can largely improve VaR prediction, especially for emerging markets where jumps play a stronger role than those in developed markets.
Resumo:
The price formation of financial assets is a complex process. It extends beyond the standard economic paradigm of supply and demand to the understanding of the dynamic behavior of price variability, the price impact of information, and the implications of trading behavior of market participants on prices. In this thesis, I study aggregate market and individual assets volatility, liquidity dimensions, and causes of mispricing for US equities over a recent sample period. How volatility forecasts are modeled, what determines intradaily jumps and causes changes in intradaily volatility and what drives the premium of traded equity indexes? Are they induced, for example, by the information content of lagged volatility and return parameters or by macroeconomic news, changes in liquidity and volatility? Besides satisfying our intellectual curiosity, answers to these questions are of direct importance to investors developing trading strategies, policy makers evaluating macroeconomic policies and to arbitrageurs exploiting mispricing in exchange-traded funds. Results show that the leverage effect and lagged absolute returns improve forecasts of continuous components of daily realized volatility as well as jumps. Implied volatility does not subsume the information content of lagged returns in forecasting realized volatility and its components. The reported results are linked to the heterogeneous market hypothesis and demonstrate the validity of extending the hypothesis to returns. Depth shocks, signed order flow, the number of trades, and resiliency are the most important determinants of intradaily volatility. In contrast, spread shock and resiliency are predictive of signed intradaily jumps. There are fewer macroeconomic news announcement surprises that cause extreme price movements or jumps than those that elevate intradaily volatility. Finally, the premium of exchange-traded funds is significantly associated with momentum in net asset value and a number of liquidity parameters including the spread, traded volume, and illiquidity. The mispricing of industry exchange traded funds suggest that limits to arbitrage are driven by potential illiquidity.
Resumo:
This paper investigates how best to forecast optimal portfolio weights in the context of a volatility timing strategy. It measures the economic value of a number of methods for forming optimal portfolios on the basis of realized volatility. These include the traditional econometric approach of forming portfolios from forecasts of the covariance matrix, and a novel method, where a time series of optimal portfolio weights are constructed from observed realized volatility and directly forecast. The approach proposed here of directly forecasting portfolio weights shows a great deal of merit. Resulting portfolios are of equivalent economic benefit to a number of competing approaches and are more stable across time. These findings have obvious implications for the manner in which volatility timing is undertaken in a portfolio allocation context.
Resumo:
Based on unique news data relating to gold and crude oil, we investigate how news volume and sentiment, shocks in trading activity, market depth and trader positions unrelated to information flow covary with realized volatility. Positive shocks to the rate of news arrival, and negative shocks to news sentiment exhibit the largest effects. After controlling for the level of news flow and cross-correlations, net trader positions play only a minor role. These findings are at odds with those of [Wang (2002a). The Journal of Futures Markets, 22, 427–450; Wang (2002b). The Financial Review, 37, 295–316], but are consistent with the previous literature which doesn't find a strong link between volatility and trader positions.
Resumo:
Particle emissions, volatility, and the concentration of reactive oxygen species (ROS) were investigated for a pre-Euro I compression ignition engine to study the potential health impacts of employing ethanol fumigation technology. Engine testing was performed in two separate experimental campaigns with most testing performed at intermediate speed with four different load settings and various ethanol substitutions. A scanning mobility particle sizer (SMPS) was used to determine particle size distributions, a volatilization tandem differential mobility analyzer (V-TDMA) was used to explore particle volatility, and a new profluorescent nitroxide probe, BPEAnit, was used to investigate the potential toxicity of particles. The greatest particulate mass reduction was achieved with ethanol fumigation at full load, which contributed to the formation of a nucleation mode. Ethanol fumigation increased the volatility of particles by coating the particles with organic material or by making extra organic material available as an external mixture. In addition, the particle-related ROS concentrations increased with ethanol fumigation and were associated with the formation of a nucleation mode. The smaller particles, the increased volatility, and the increase in potential particle toxicity with ethanol fumigation may provide a substantial barrier for the uptake of fumigation technology using ethanol as a supplementary fuel.
Resumo:
Forecasting volatility has received a great deal of research attention, with the relative performances of econometric model based and option implied volatility forecasts often being considered. While many studies find that implied volatility is the pre-ferred approach, a number of issues remain unresolved, including the relative merit of combining forecasts and whether the relative performances of various forecasts are statistically different. By utilising recent econometric advances, this paper considers whether combination forecasts of S&P 500 volatility are statistically superior to a wide range of model based forecasts and implied volatility. It is found that a combination of model based forecasts is the dominant approach, indicating that the implied volatility cannot simply be viewed as a combination of various model based forecasts. Therefore, while often viewed as a superior volatility forecast, the implied volatility is in fact an inferior forecast of S&P 500 volatility relative to model-based forecasts.
Resumo:
The term structure of interest rates is often summarized using a handful of yield factors that capture shifts in the shape of the yield curve. In this paper, we develop a comprehensive model for volatility dynamics in the level, slope, and curvature of the yield curve that simultaneously includes level and GARCH effects along with regime shifts. We show that the level of the short rate is useful in modeling the volatility of the three yield factors and that there are significant GARCH effects present even after including a level effect. Further, we find that allowing for regime shifts in the factor volatilities dramatically improves the model’s fit and strengthens the level effect. We also show that a regime-switching model with level and GARCH effects provides the best out-of-sample forecasting performance of yield volatility. We argue that the auxiliary models often used to estimate term structure models with simulation-based estimation techniques should be consistent with the main features of the yield curve that are identified by our model.
Resumo:
Much research has investigated the differences between option implied volatilities and econometric model-based forecasts. Implied volatility is a market determined forecast, in contrast to model-based forecasts that employ some degree of smoothing of past volatility to generate forecasts. Implied volatility has the potential to reflect information that a model-based forecast could not. This paper considers two issues relating to the informational content of the S&P 500 VIX implied volatility index. First, whether it subsumes information on how historical jump activity contributed to the price volatility, followed by whether the VIX reflects any incremental information pertaining to future jump activity relative to model-based forecasts. It is found that the VIX index both subsumes information relating to past jump contributions to total volatility and reflects incremental information pertaining to future jump activity. This issue has not been examined previously and expands our understanding of how option markets form their volatility forecasts.
Resumo:
We analyse the puzzling behavior of the volatility of individual stock returns around the turn of the Millennium. There has been much academic interest in this topic, but no convincing explanation has arisen. Our goal is to pull together the many competing explanations currently proposed in the literature to delermine which, if any, are capable of explaining the volatility trend. We find that many of the different explanations capture the same unusual trend around the Millennium. We find that many of the variables are very highly correlated and it is thus difficult to disentangle their relalive ability to exlplain the time-series behavior in volatility. It seems thai all of the variables that track average volatility well do so mainly by capturing changes in the post-1994 period. These variables have no time-series explanatory power in the pre-1995 years, questioning the underlying idea that any of the explanations currently plesented in the literature can track the trend in volatility over long periods.
Resumo:
No-tillage (NT) management has been promoted as a practice capable of offsetting greenhouse gas (GHG) emissions because of its ability to sequester carbon in soils. However, true mitigation is only possible if the overall impact of NT adoption reduces the net global warming potential (GWP) determined by fluxes of the three major biogenic GHGs (i.e. CO2, N2O, and CH4). We compiled all available data of soil-derived GHG emission comparisons between conventional tilled (CT) and NT systems for humid and dry temperate climates. Newly converted NT systems increase GWP relative to CT practices, in both humid and dry climate regimes, and longer-term adoption (>10 years) only significantly reduces GWP in humid climates. Mean cumulative GWP over a 20-year period is also reduced under continuous NT in dry areas, but with a high degree of uncertainty. Emissions of N2O drive much of the trend in net GWP, suggesting improved nitrogen management is essential to realize the full benefit from carbon storage in the soil for purposes of global warming mitigation. Our results indicate a strong time dependency in the GHG mitigation potential of NT agriculture, demonstrating that GHG mitigation by adoption of NT is much more variable and complex than previously considered, and policy plans to reduce global warming through this land management practice need further scrutiny to ensure success.