188 resultados para Radius fractures
Resumo:
Distal radius fractures stabilized by open reduction internal fixation (ORIF) have become increasingly common. There is currently no consensus on the optimal time to commence range of motion (ROM) exercises post-ORIF. A retrospective cohort review was conducted over a five-year period to compare wrist and forearm range of motion outcomes and number of therapy sessions between patients who commenced active ROM exercises within the first seven days and from day eight onward following ORIF of distal radius fractures. One hundred and twenty-one patient cases were identified. Clinical data, active ROM at initial and discharge therapy assessments, fracture type, surgical approaches, and number of therapy sessions attended were recorded. One hundred and seven (88.4%) cases had complete datasets. The early active ROM group (n = 37) commenced ROM a mean (SD) of 4.27 (1.8) days post-ORIF. The comparator group (n = 70) commenced ROM exercises 24.3 (13.6) days post-ORIF. No significant differences were identified between groups in ROM at initial or discharge assessments, or therapy sessions attended. The results from this study indicate that patients who commenced active ROM exercises an average of 24 days after surgery achieved comparable ROM outcomes with similar number of therapy sessions to those who commenced ROM exercises within the first week.
Resumo:
INTRODUCTION: Currently available volar locking plates for the treatment of distal radius fractures incorporate at least two distal screw rows for fixation of the metaphyseal fragment and have a variable-angle locking mechanism which allows placement of the screws in various directions There is, however no evidence that these plates translate into better outcomes or have superior biomechanical properties to first generation plates, which had a single distal screw row and fixed-angle locking. The aim of our biomechanical study was to compare fixed-angle single-row plates with variable-angle multi-row plates to clarify the optimal number of locking screws. MATERIALS AND METHODS: Five different plate-screw combinations of three different manufacturers were tested, each group consisting of five synthetic fourth generation distal radius bones. An AO type C2 fracture was created and the fractures were plated according to each manufacturer's recommendations. The specimens then underwent cyclic and load-to-failure testing. An optical motion analysis system was used to detect displacement of fragments. RESULTS: No significant differences were detected after cyclic loading as well as after load-to-failure testing, neither in regard to axial deformation, implant rigidity or maximum displacement. The fixed-angle single-row plate showed the highest pre-test rigidity, least increase in post-testing rigidity and highest load-to-failure rigidity and least radial shortening. The radial shortening of plates with two distal screw rows was 3.1 and 4.3 times higher, respectively, than that of the fixed-angle single-row plate. CONCLUSION: The results of our study indicate that two distal screw rows do not add to construct rigidity and resistance against loss of reduction. Well conducted clinical studies based on the findings of biomechanical studies are necessary to determine the optimal number of screws necessary to achieve reproducibly good results in the treatment of distal radius fractures.
Mitigating surgical risk in patients undergoing hip arthroplasty for fractures of the proximal femur
Resumo:
Recently the National Patient Safety Agency in the United Kingdom published a report entitled "Mitigating surgical risk in patients undergoing hip arthroplasty for fractures of the proximal femur". A total of 26 deaths had been reported to them when cement was used at hemiarthroplasty between October 2003 and October 2008. This paper considers the evidence for using cement fixation of a hemiarthroplasty in the treatment of hip fractures.
Resumo:
Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.
Resumo:
We report numerical analysis and experimental observation of strongly localized plasmons guided by triangular metal wedges and pay special attention to the effect of smooth (nonzero radius) tips. Dispersion, dissipation, and field structure of such wedge plasmons are analyzed using the compact two-dimensional finite-difference time-domain algorithm. Experimental observation is conducted by the end-fire excitation and near-field scanning optical microscope detection of the predicted plasmons on 40°silver nanowedges with the wedge tip radii of 20, 85, and 125 nm that were fabricated by the focused-ion beam method. The effect of smoothing wedge tips is shown to be similar to that of increasing wedge angle. Increasing wedge angle or wedge tip radius results in increasing propagation distance at the same time as decreasing field localization (decreasing wave number). Quantitative differences between the theoretical and experimental propagation distances are suggested to be due to a contribution of scattered bulk and surface waves near the excitation region as well as the addition of losses due to surface roughness. The theoretical and measured propagation distances are several plasmon wavelengths and are useful for a range of nano-optical applications
Resumo:
Osteoporosis is the most common bone disease. Low levels of oestrogens or testosterone are risk factors for primary osteoporosis. The most common cause of secondary osteoporosis is glucocorticoid treatment, but there are many other secondary causes of osteoporosis. Osteoporosis can be secondary to anti-oestrogen treatment for hormone-sensitive breast cancer and to androgen-deprivation therapy for prostate cancer. Zoledronic is the most potent bisphosphonate at inhibiting bone resorption. In osteoporosis, zoledronic acid increases bone mineral density for at least a year after a single intravenous administration. The efficacy and safety of extended release (once-yearly) zoledronic acid in the treatment of osteoporosis is reviewed.
Resumo:
BACKGROUND: Treatment of proximal humerus fractures in elderly patients is challenging because of reduced bone quality. We determined the in vitro characteristics of a new implant developed to target the remaining bone stock, and compared it with an implant in clinical use. METHODS: Following osteotomy, left and right humeral pairs from cadavers were treated with either the Button-Fix or the Humerusblock fixation system. Implant stiffness was determined for three clinically relevant cases of load: axial compression, torsion, and varus bending. In addition, a cyclic varus-bending test was performed. RESULTS: We found higher stiffness values for the humeri treated with the ButtonFix system--with almost a doubling of the compression, torsion, and bending stiffness values. Under dynamic loading, the ButtonFix system had superior stiffness and less K-wire migration compared to the Humerusblock system. INTERPRETATION: When compared to the Humerusblock design, the ButtonFix system showed superior biomechanical properties, both static and dynamic. It offers a minimally invasive alternative for the treatment of proximal humerus fractures.