115 resultados para REGRESSION MODEL
Resumo:
Land-use regression (LUR) is a technique that can improve the accuracy of air pollution exposure assessment in epidemiological studies. Most LUR models are developed for single cities, which places limitations on their applicability to other locations. We sought to develop a model to predict nitrogen dioxide (NO2) concentrations with national coverage of Australia by using satellite observations of tropospheric NO2 columns combined with other predictor variables. We used a generalised estimating equation (GEE) model to predict annual and monthly average ambient NO2 concentrations measured by a national monitoring network from 2006 through 2011. The best annual model explained 81% of spatial variation in NO2 (absolute RMS error=1.4 ppb), while the best monthly model explained 76% (absolute RMS error=1.9 ppb). We applied our models to predict NO2 concentrations at the ~350,000 census mesh blocks across the country (a mesh block is the smallest spatial unit in the Australian census). National population-weighted average concentrations ranged from 7.3 ppb (2006) to 6.3 ppb (2011). We found that a simple approach using tropospheric NO2 column data yielded models with slightly better predictive ability than those produced using a more involved approach that required simulation of surface-to-column ratios. The models were capable of capturing within-urban variability in NO2, and offer the ability to estimate ambient NO2 concentrations at monthly and annual time scales across Australia from 2006–2011. We are making our model predictions freely available for research.
Resumo:
Large multisite efforts (e.g., the ENIGMA Consortium), have shown that neuroimaging traits including tract integrity (from DTI fractional anisotropy, FA) and subcortical volumes (from T1-weighted scans) are highly heritable and promising phenotypes for discovering genetic variants associated with brain structure. However, genetic correlations (rg) among measures from these different modalities for mapping the human genome to the brain remain unknown. Discovering these correlations can help map genetic and neuroanatomical pathways implicated in development and inherited risk for disease. We use structural equation models and a twin design to find rg between pairs of phenotypes extracted from DTI and MRI scans. When controlling for intracranial volume, the caudate as well as related measures from the limbic system - hippocampal volume - showed high rg with the cingulum FA. Using an unrelated sample and a Seemingly Unrelated Regression model for bivariate analysis of this connection, we show that a multivariate GWAS approach may be more promising for genetic discovery than a univariate approach applied to each trait separately.
Resumo:
Traffic-related air pollution has been associated with a wide range of adverse health effects. One component of traffic emissions that has been receiving increasing attention is ultrafine particles(UFP, < 100 nm), which are of concern to human health due to their small diameters. Vehicles are the dominant source of UFP in urban environments. Small-scale variation in ultrafine particle number concentration (PNC) can be attributed to local changes in land use and road abundance. UFPs are also formed as a result of particle formation events. Modelling the spatial patterns in PNC is integral to understanding human UFP exposure and also provides insight into particle formation mechanisms that contribute to air pollution in urban environments. Land-use regression (LUR) is a technique that can use to improve the prediction of air pollution.
Resumo:
The need for a house rental model in Townsville, Australia is addressed. Models developed for predicting house rental levels are described. An analytical model is built upon a priori selected variables and parameters of rental levels. Regression models are generated to provide a comparison to the analytical model. Issues in model development and performance evaluation are discussed. A comparison of the models indicates that the analytical model performs better than the regression models.
Resumo:
Nitrous oxide (N2O) is one of the greenhouse gases that can contribute to global warming. Spatial variability of N2O can lead to large uncertainties in prediction. However, previous studies have often ignored the spatial dependency to quantify the N2O - environmental factors relationships. Few researches have examined the impacts of various spatial correlation structures (e.g. independence, distance-based and neighbourhood based) on spatial prediction of N2O emissions. This study aimed to assess the impact of three spatial correlation structures on spatial predictions and calibrate the spatial prediction using Bayesian model averaging (BMA) based on replicated, irregular point-referenced data. The data were measured in 17 chambers randomly placed across a 271 m(2) field between October 2007 and September 2008 in the southeast of Australia. We used a Bayesian geostatistical model and a Bayesian spatial conditional autoregressive (CAR) model to investigate and accommodate spatial dependency, and to estimate the effects of environmental variables on N2O emissions across the study site. We compared these with a Bayesian regression model with independent errors. The three approaches resulted in different derived maps of spatial prediction of N2O emissions. We found that incorporating spatial dependency in the model not only substantially improved predictions of N2O emission from soil, but also better quantified uncertainties of soil parameters in the study. The hybrid model structure obtained by BMA improved the accuracy of spatial prediction of N2O emissions across this study region.
Resumo:
Hot spot identification (HSID) aims to identify potential sites—roadway segments, intersections, crosswalks, interchanges, ramps, etc.—with disproportionately high crash risk relative to similar sites. An inefficient HSID methodology might result in either identifying a safe site as high risk (false positive) or a high risk site as safe (false negative), and consequently lead to the misuse the available public funds, to poor investment decisions, and to inefficient risk management practice. Current HSID methods suffer from issues like underreporting of minor injury and property damage only (PDO) crashes, challenges of accounting for crash severity into the methodology, and selection of a proper safety performance function to model crash data that is often heavily skewed by a preponderance of zeros. Addressing these challenges, this paper proposes a combination of a PDO equivalency calculation and quantile regression technique to identify hot spots in a transportation network. In particular, issues related to underreporting and crash severity are tackled by incorporating equivalent PDO crashes, whilst the concerns related to the non-count nature of equivalent PDO crashes and the skewness of crash data are addressed by the non-parametric quantile regression technique. The proposed method identifies covariate effects on various quantiles of a population, rather than the population mean like most methods in practice, which more closely corresponds with how black spots are identified in practice. The proposed methodology is illustrated using rural road segment data from Korea and compared against the traditional EB method with negative binomial regression. Application of a quantile regression model on equivalent PDO crashes enables identification of a set of high-risk sites that reflect the true safety costs to the society, simultaneously reduces the influence of under-reported PDO and minor injury crashes, and overcomes the limitation of traditional NB model in dealing with preponderance of zeros problem or right skewed dataset.
Resumo:
This paper uses a correlated multinomial logit model and a Poisson regression model to measure the factors affecting demand for different types of transportation by elderly and disabled people in rural Virginia. The major results are: (a) A paratransit system providing door-to-door service is highly valued by transportation-handicapped people; (b) Taxis are probably a potential but inferior alternative even when subsidized; (c) Buses are a poor alternative, especially in rural areas where distances to bus stops may be long; (d) Making buses handicap-accessible would have a statistically significant but small effect on mode choice; (e) Demand is price inelastic; and (f) The total number of trips taken is insensitive to mode availability and characteristics. These results suggest that transportation-handicapped people take a limited number of trips. Those they do take are in some sense necessary (given the low elasticity with respect to mode price or availability). People will substitute away from relying upon others when appropriate transportation is available, at least to some degree. But such transportation needs to be flexible enough to meet the needs of the people involved.
Resumo:
Ordinal qualitative data are often collected for phenotypical measurements in plant pathology and other biological sciences. Statistical methods, such as t tests or analysis of variance, are usually used to analyze ordinal data when comparing two groups or multiple groups. However, the underlying assumptions such as normality and homogeneous variances are often violated for qualitative data. To this end, we investigated an alternative methodology, rank regression, for analyzing the ordinal data. The rank-based methods are essentially based on pairwise comparisons and, therefore, can deal with qualitative data naturally. They require neither normality assumption nor data transformation. Apart from robustness against outliers and high efficiency, the rank regression can also incorporate covariate effects in the same way as the ordinary regression. By reanalyzing a data set from a wheat Fusarium crown rot study, we illustrated the use of the rank regression methodology and demonstrated that the rank regression models appear to be more appropriate and sensible for analyzing nonnormal data and data with outliers.
Resumo:
This article is motivated by a lung cancer study where a regression model is involved and the response variable is too expensive to measure but the predictor variable can be measured easily with relatively negligible cost. This situation occurs quite often in medical studies, quantitative genetics, and ecological and environmental studies. In this article, by using the idea of ranked-set sampling (RSS), we develop sampling strategies that can reduce cost and increase efficiency of the regression analysis for the above-mentioned situation. The developed method is applied retrospectively to a lung cancer study. In the lung cancer study, the interest is to investigate the association between smoking status and three biomarkers: polyphenol DNA adducts, micronuclei, and sister chromatic exchanges. Optimal sampling schemes with different optimality criteria such as A-, D-, and integrated mean square error (IMSE)-optimality are considered in the application. With set size 10 in RSS, the improvement of the optimal schemes over simple random sampling (SRS) is great. For instance, by using the optimal scheme with IMSE-optimality, the IMSEs of the estimated regression functions for the three biomarkers are reduced to about half of those incurred by using SRS.
Resumo:
Low density suburban development and excessive use of automobiles are associated with serious urban and environmental problems. These problems include traffic congestion, longer commuting times, high automobile dependency, air and water pollution, and increased depletion of natural resources. Master planned development suggests itself as a possible palliative for the ills of low density and high travel. The following study examines the patterns and dynamics of movement in a selection of master planned estates in Australia. The study develops new approaches for assessing the containment of travel within planned development. Its key aim is to clarify and map the relationships between trip generation and urban form and structure. The initial conceptual framework of the paper is developed in a review of literature related to urban form and travel behaviour. These concepts are tested empirically in a pilot study of suburban travel activity in master planned estates. A geographical information systems methodology is used to determine regional journey-to-work patterns and travel containment rates. Factors that influence selfcontainment patterns are estimated with a regression model. This research is a useful preliminary examination of travel self-containment in Australian master planned estates.
Resumo:
Low density suburban development and excessive use of automobiles are associated with serious urban and environmental problems. These problems include traffic congestion, longer commuting times, high automobile dependency, air and water pollution, and increased depletion of natural resources. Master planned development suggests itself as a possible palliative for the ills of low density and high travel. The following study examines the patterns and dynamics of movement in a selection of master planned estates in Australia. The study develops new approaches for assessing the containment of travel within planned development. Its key aim is to clarify and map the relationships between trip generation and urban form and structure. The initial conceptual framework of the report is developed in a review of literature related to urban form and travel behaviour. These concepts are tested empirically in a pilot study of suburban travel activity in master planned estates. A geographical information systems (GIS) methodology is used to determine regional journey-to-work patterns and travel containment rates. Factors that influence self-containment patterns are estimated with a regression model. The key research findings of the pilot study are: - There is a strong relation between urban structural form and patterns of trip generation; - The travel self-containment of Australian master planned estates is lower than the scholarly literature implies would occur if appropriate planning principles to achieve sustainable urban travel were followed; - Proximity to the central business district, income level and education status are positively correlated with travel containment; - Master planned estates depend more on local and regional centres for employment than on the central business district; - The service sector is the major employer in and around master planned estates. It tends to provide part-time and casual employment rather than full-time employment; - Travel self-containment is negative correlated with car dependency. Master planned estates with less car dependent residents, and with good access to public transport, appear to be more self-contained and, consequently, more sustainable than the norm. This research is a useful preliminary examination of travel self-containment in Australian master planned estates. It by no means exhausts the subject. In future research we hope to further assess sustainable travel patterns with more detailed spatial analysis.
Resumo:
The rapid uptake of mobile devices has created the capacity to provide services to consumers while they are on the move, and new mobile services (m-services) are constantly emerging. In past research, personal attributes have been found to be import ant in the adoption and use of information and communication technology. However, little research has been conducted in the area of m-services. To explore factors influencing the use of these services, this paper examines personal attributes in terms of motivational, attitudinal and demographic characteristics. Specifically, it investigates the influence of innovativeness, self- efficacy, involvement and impulsiveness, as well as age and gender on m-services use . Data were collected from a convenience sample of 250 respondents using an online survey and a modified snowball procedure. Age and gender were quite well balanced in the sample. The multiple regression model was significant and the hypotheses relating to the positive relationship between impulsiveness, involvement and gender and m-services were supported. Findings are discussed, further implications for managers are suggested and directions for future research are proposed.
Resumo:
Aim – To develop and assess the predictive capabilities of a statistical model that relates routinely collected Trauma Injury Severity Score (TRISS) variables to length of hospital stay (LOS) in survivors of traumatic injury. Method – Retrospective cohort study of adults who sustained a serious traumatic injury, and who survived until discharge from Auckland City, Middlemore, Waikato, or North Shore Hospitals between 2002 and 2006. Cubic-root transformed LOS was analysed using two-level mixed-effects regression models. Results – 1498 eligible patients were identified, 1446 (97%) injured from a blunt mechanism and 52 (3%) from a penetrating mechanism. For blunt mechanism trauma, 1096 (76%) were male, average age was 37 years (range: 15-94 years), and LOS and TRISS score information was available for 1362 patients. Spearman’s correlation and the median absolute prediction error between LOS and the original TRISS model was ρ=0.31 and 10.8 days, respectively, and between LOS and the final multivariable two-level mixed-effects regression model was ρ=0.38 and 6.0 days, respectively. Insufficient data were available for the analysis of penetrating mechanism models. Conclusions – Neither the original TRISS model nor the refined model has sufficient ability to accurately or reliably predict LOS. Additional predictor variables for LOS and other indicators for morbidity need to be considered.
Resumo:
Background/Aims: In an investigation of the functional impact of amblyopia on children, the fine motor skills, perceived self-esteem and eye movements of amblyopic children were compared with that of age-matched controls. The influence of amblyogenic condition or treatment factors that might predict any decrement in outcome measures was investigated. The relationship between indirect measures of eye movements that are used clinically and eye movement characteristics recorded during reading was examined and the relevance of proficiency in fine motor skills to performance on standardised educational tests was explored in a sub-group of the control children. Methods: Children with amblyopia (n=82; age 8.2 ± 1.3 years) from differing causes (infantile esotropia n=17, acquired strabismus n=28, anisometropia n=15, mixed n=13 and deprivation n=9), and a control group of children (n=106; age 9.5 ± 1.2 years) participated in this study. Measures of visual function included monocular logMAR visual acuity (VA) and stereopsis assessed with the Randot Preschool Stereoacuity test, while fine motor skills were measured using the Visual-Motor Control (VMC) and Upper Limb Speed and Dexterity (ULSD) subtests of the Brunicks-Oseretsky Test of Motor Proficiency. Perceived self esteem was assessed for those children from grade 3 school level with the Harter Self Perception Profile for Children and for those in younger grades (preschool to grade 2) with the Pictorial Scale of Perceived Competence and Acceptance for Young Children. A clinical measure of eye movements was made with the Developmental Eye Movement (DEM) test for those children aged eight years and above. For appropriate case-control comparison of data, the results from amblyopic children were compared with age-matched sub-samples drawn from the group of children with normal vision who completed the tests. Eye movements during reading for comprehension were recorded by the Visagraph infra-red recording system and results of standardised tests of educational performance were also obtained for a sub-set of the control group. Results Amblyopic children (n=82; age 8.2 ± 1.7 years) performed significantly poorer than age-matched control children (n=37; age 8.3 ± 1.3 years) on 9 of 16 fine motor skills sub-items and for the overall age-standardised scores for both VMC and ULSD items (p<0.05); differences were most evident on timed manual dexterity tasks. The underlying aetiology of amblyopia and level of stereoacuity significantly affected fine motor skill performance on both items. However, when examined in a multiple regression model that took into account the inter-correlation between visual characteristics, poorer fine motor skills performance was only associated with strabismus (F1,75 = 5.428; p =0. 022), and not with the level of stereoacuity, refractive error or visual acuity in either eye. Amblyopic children from grade 3 school level and above (n=47; age 9.2 ± 1.3 years), particularly those with acquired strabismus, had significantly lower social acceptance scores than age-matched control children (n=52; age 9.4 ± 0.5 years) (F(5,93) = 3.14; p = 0.012). However, the scores of the amblyopic children were not significantly different to controls for other areas related to self-esteem, including scholastic competence, physical appearance, athletic competence, behavioural conduct and global self worth. A lower social acceptance score was independently associated with a history of treatment with patching but not with a history of strabismus or wearing glasses. Amblyopic children from pre-school to grade 2 school level (n=29; age = 6.6 ± 0.6 years) had similar self-perception scores to their age-matched peers (n=20; age = 6.4 ± 0.5 years). There were no significant differences between the amblyopic (n=39; age 9.1 ± 0.9 years) and age-matched control (n = 42; age = 9.3 ± 0.38 years) groups for any of the DEM outcome measures (Vertical Time, Horizontal Time, Number of Errors and Ratio (Horizontal time/Vertical time)). Performance on the DEM did not significantly relate to measures of VA in either eye, level of binocular function, history of strabismus or refractive error. Developmental Eye Movement test outcome measures Horizontal Time and Vertical Time were significantly correlated with reading rates measured by the Visagraph for both reading for comprehension and naming numbers (r>0.5). Some moderate correlations were also seen between the DEM Ratio and word reading rates as recorded by Visagraph (r=0.37). In children with normal vision, academic scores in mathematics, spelling and reading were associated with measures of fine motor skills. Strongest effect sizes were seen with the timed manual dexterity domain, Upper Limb Speed and Dexterity. Conclusions Amblyopia may have a negative impact on a child’s fine motor skills and an older child’s sense of acceptance by their peers may be influenced by treatment that includes eye patching. Clinical measures of eye movements were not affected in amblyopic children. A number of the outcome measures of the DEM are associated with objective recordings of reading rates, supporting its clinical use for identification of children with slower reading rates. In children with normal vision, proficiency on clinical measures of fine motor skill are associated with outcomes on standardised measures of educational performance. Scores on timed manual dexterity tasks had the strongest association with educational performance. Collectively, the results of this study indicate that, in addition to the reduction in visual acuity and binocular function that define the condition, amblyopes have functional impairment in childhood development skills that underlie proficiency in everyday activities. The study provides support for strategies aimed at early identification and remediation of amblyopia and the co-morbidities that arise from abnormal visual neurodevelopment.