250 resultados para Query languages


Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the early design stages of construction projects, accurate and timely cost feedback is critical to design decision making. This is particularly challenging for cost estimators, as they must quickly and accurately estimate the cost of the building when the design is still incomplete and evolving. State-of-the-art software tools typically use a rule-based approach to generate detailed quantities from the design details present in a building model and relate them to the cost items in a cost estimating database. In this paper, we propose a generic approach for creating and maintaining a cost estimate using flexible mappings between a building model and a cost estimate. The approach uses queries on the building design that are used to populate views, and each view is then associated with one or more cost items. The benefit of this approach is that the flexibility of modern query languages allows the estimator to encode a broad variety of relationships between the design and estimate. It also avoids the use of a common standard to which both designers and estimators must conform, allowing the estimator added flexibility and functionality to their work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing diversity of the Internet has created a vast number of multilingual resources on the Web. A huge number of these documents are written in various languages other than English. Consequently, the demand for searching in non-English languages is growing exponentially. It is desirable that a search engine can search for information over collections of documents in other languages. This research investigates the techniques for developing high-quality Chinese information retrieval systems. A distinctive feature of Chinese text is that a Chinese document is a sequence of Chinese characters with no space or boundary between Chinese words. This feature makes Chinese information retrieval more difficult since a retrieved document which contains the query term as a sequence of Chinese characters may not be really relevant to the query since the query term (as a sequence Chinese characters) may not be a valid Chinese word in that documents. On the other hand, a document that is actually relevant may not be retrieved because it does not contain the query sequence but contains other relevant words. In this research, we propose two approaches to deal with the problems. In the first approach, we propose a hybrid Chinese information retrieval model by incorporating word-based techniques with the traditional character-based techniques. The aim of this approach is to investigate the influence of Chinese segmentation on the performance of Chinese information retrieval. Two ranking methods are proposed to rank retrieved documents based on the relevancy to the query calculated by combining character-based ranking and word-based ranking. Our experimental results show that Chinese segmentation can improve the performance of Chinese information retrieval, but the improvement is not significant if it incorporates only Chinese segmentation with the traditional character-based approach. In the second approach, we propose a novel query expansion method which applies text mining techniques in order to find the most relevant words to extend the query. Unlike most existing query expansion methods, which generally select the highly frequent indexing terms from the retrieved documents to expand the query. In our approach, we utilize text mining techniques to find patterns from the retrieved documents that highly correlate with the query term and then use the relevant words in the patterns to expand the original query. This research project develops and implements a Chinese information retrieval system for evaluating the proposed approaches. There are two stages in the experiments. The first stage is to investigate if high accuracy segmentation can make an improvement to Chinese information retrieval. In the second stage, a text mining based query expansion approach is implemented and a further experiment has been done to compare its performance with the standard Rocchio approach with the proposed text mining based query expansion method. The NTCIR5 Chinese collections are used in the experiments. The experiment results show that by incorporating the text mining based query expansion with the hybrid model, significant improvement has been achieved in both precision and recall assessments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterprise Application Integration (EAI) is a challenging area that is attracting growing attention from the software industry and the research community. A landscape of languages and techniques for EAI has emerged and is continuously being enriched with new proposals from different software vendors and coalitions. However, little or no effort has been dedicated to systematically evaluate and compare these languages and techniques. The work reported in this paper is a first step in this direction. It presents an in-depth analysis of a language, namely the Business Modeling Language, specifically developed for EAI. The framework used for this analysis is based on a number of workflow and communication patterns. This framework provides a basis for evaluating the advantages and drawbacks of EAI languages with respect to recurrent problems and situations.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peer to peer systems have been widely used in the internet. However, most of the peer to peer information systems are still missing some of the important features, for example cross-language IR (Information Retrieval) and collection selection / fusion features. Cross-language IR is the state-of-art research area in IR research community. It has not been used in any real world IR systems yet. Cross-language IR has the ability to issue a query in one language and receive documents in other languages. In typical peer to peer environment, users are from multiple countries. Their collections are definitely in multiple languages. Cross-language IR can help users to find documents more easily. E.g. many Chinese researchers will search research papers in both Chinese and English. With Cross-language IR, they can do one query in Chinese and get documents in two languages. The Out Of Vocabulary (OOV) problem is one of the key research areas in crosslanguage information retrieval. In recent years, web mining was shown to be one of the effective approaches to solving this problem. However, how to extract Multiword Lexical Units (MLUs) from the web content and how to select the correct translations from the extracted candidate MLUs are still two difficult problems in web mining based automated translation approaches. Discovering resource descriptions and merging results obtained from remote search engines are two key issues in distributed information retrieval studies. In uncooperative environments, query-based sampling and normalized-score based merging strategies are well-known approaches to solve such problems. However, such approaches only consider the content of the remote database but do not consider the retrieval performance of the remote search engine. This thesis presents research on building a peer to peer IR system with crosslanguage IR and advance collection profiling technique for fusion features. Particularly, this thesis first presents a new Chinese term measurement and new Chinese MLU extraction process that works well on small corpora. An approach to selection of MLUs in a more accurate manner is also presented. After that, this thesis proposes a collection profiling strategy which can discover not only collection content but also retrieval performance of the remote search engine. Based on collection profiling, a web-based query classification method and two collection fusion approaches are developed and presented in this thesis. Our experiments show that the proposed strategies are effective in merging results in uncooperative peer to peer environments. Here, an uncooperative environment is defined as each peer in the system is autonomous. Peer like to share documents but they do not share collection statistics. This environment is a typical peer to peer IR environment. Finally, all those approaches are grouped together to build up a secure peer to peer multilingual IR system that cooperates through X.509 and email system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-World Data Mining Applications generally do not end up with the creation of the models. The use of the model is the final purpose especially in prediction tasks. The problem arises when the model is built based on much more information than that the user can provide in using the model. As a result, the performance of model reduces drastically due to many missing attributes values. This paper develops a new learning system framework, called as User Query Based Learning System (UQBLS), for building data mining models best suitable for users use. We demonstrate its deployment in a real-world application of the lifetime prediction of metallic components in buildings

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter discusses reference modelling languages for business systems analysis and design. In particular, it reports on reference models in the context of the design-for/by-reuse paradigm, explains how traditional modelling techniques fail to provide adequate conceptual expressiveness to allow for easy model reuse by configuration or adaptation and elaborates on the need for reference modelling languages to be configurable. We discuss requirements for and the development of reference modelling languages that reflect the need for configurability. Exemplarily, we report on the development, definition and configuration of configurable event-driven process chains. We further outline how configurable reference modelling languages and the corresponding design principles can be used in future scenarios such as process mining and data modelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This abstract provides a preliminary discussion of the importance of recognising Torres Strait Islander knowledges and home languages of mathematics education. It stems from a project involving Torres Strait Islander Teachers and Teacher Aides and university based researchers who are working together to enhance the mathematics learning of students from Years 4-9. A key focus of the project is that mathematics is relevant and provides students with opportunities for further education, training and employment. Veronica Arbon (2008) questions the assumptions underpinning Western mainstream education as beneficial for Aboriginal and Torres Strait Islander people which assumes that it enables them to better participate in Australian society. She asks “how de we best achieve outcomes for and with Indigenous people conducive to our cultural, physical and economic sustainability as defined by us from Indigenous knowledge positions?” (p. 118). How does a mainstream education written to English conventions provide students with the knowledge and skills to participate in daily life, if it does not recognise the cultural identity of Indigenous students as it should (Priest, 2005; cf. Schnukal, 2003)? Arbon (2008) states that this view is now brought into question with calls for both ways education where mainstream knowledge and practices is blended with Indigenous cultural knowledges of learning. This project considers as crucial that cultural knowledges and experiences of Indigenous people to be valued and respected and given the currency in the same way that non Indigenous knowledge is (Taylor, 2003) for both ways education to work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Query reformulation is a key user behavior during Web search. Our research goal is to develop predictive models of query reformulation during Web searching. This article reports results from a study in which we automatically classified the query-reformulation patterns for 964,780 Web searching sessions, composed of 1,523,072 queries, to predict the next query reformulation. We employed an n-gram modeling approach to describe the probability of users transitioning from one query-reformulation state to another to predict their next state. We developed first-, second-, third-, and fourth-order models and evaluated each model for accuracy of prediction, coverage of the dataset, and complexity of the possible pattern set. The results show that Reformulation and Assistance account for approximately 45% of all query reformulations; furthermore, the results demonstrate that the first- and second-order models provide the best predictability, between 28 and 40% overall and higher than 70% for some patterns. Implications are that the n-gram approach can be used for improving searching systems and searching assistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports results from a study in which we automatically classified the query reformulation patterns for 964,780 Web searching sessions (composed of 1,523,072 queries) in order to predict what the next query reformulation would be. We employed an n-gram modeling approach to describe the probability of searchers transitioning from one query reformulation state to another and predict their next state. We developed first, second, third, and fourth order models and evaluated each model for accuracy of prediction. Findings show that Reformulation and Assistance account for approximately 45 percent of all query reformulations. Searchers seem to seek system searching assistant early in the session or after a content change. The results of our evaluations show that the first and second order models provided the best predictability, between 28 and 40 percent overall, and higher than 70 percent for some patterns. Implications are that the n-gram approach can be used for improving searching systems and searching assistance in real time.