105 resultados para Quantum Interference
Resumo:
A key concept in many Information Retrieval (IR) tasks, e.g. document indexing, query language modelling, aspect and diversity retrieval, is the relevance measurement of topics, i.e. to what extent an information object (e.g. a document or a query) is about the topics. This paper investigates the interference of relevance measurement of a topic caused by another topic. For example, consider that two user groups are required to judge whether a topic q is relevant to a document d, and q is presented together with another topic (referred to as a companion topic). If different companion topics are used for different groups, interestingly different relevance probabilities of q given d can be reached. In this paper, we present empirical results showing that the relevance of a topic to a document is greatly affected by the companion topic’s relevance to the same document, and the extent of the impact differs with respect to different companion topics. We further analyse the phenomenon from classical and quantum-like interference perspectives, and connect the phenomenon to nonreality and contextuality in quantum mechanics. We demonstrate that quantum like model fits in the empirical data, could be potentially used for predicting the relevance when interference exists.
Resumo:
The term “vagueness” describes a property of natural concepts, which normally have fuzzy boundaries, admit borderline cases, and are susceptible to Zeno’s sorites paradox. We will discuss the psychology of vagueness, especially experiments investigating the judgment of borderline cases and contradictions. In the theoretical part, we will propose a probabilistic model that describes the quantitative characteristics of the experimental finding and extends Alxatib’s and Pelletier’s (2011) theoretical analysis. The model is based on a Hopfield network for predicting truth values. Powerful as this classical perspective is, we show that it falls short of providing an adequate coverage of the relevant empirical results. In the final part, we will argue that a substan- tial modification of the analysis put forward by Alxatib and Pelletier and its probabilistic pendant is needed. The proposed modification replaces the standard notion of probabilities by quantum probabilities. The crucial phenomenon of borderline contradictions can be explained then as a quantum interference phenomenon.
Resumo:
A known limitation of the Probability Ranking Principle (PRP) is that it does not cater for dependence between documents. Recently, the Quantum Probability Ranking Principle (QPRP) has been proposed, which implicitly captures dependencies between documents through “quantum interference”. This paper explores whether this new ranking principle leads to improved performance for subtopic retrieval, where novelty and diversity is required. In a thorough empirical investigation, models based on the PRP, as well as other recently proposed ranking strategies for subtopic retrieval (i.e. Maximal Marginal Relevance (MMR) and Portfolio Theory(PT)), are compared against the QPRP. On the given task, it is shown that the QPRP outperforms these other ranking strategies. And unlike MMR and PT, one of the main advantages of the QPRP is that no parameter estimation/tuning is required; making the QPRP both simple and effective. This research demonstrates that the application of quantum theory to problems within information retrieval can lead to significant improvements.
Resumo:
In this work, we summarise the development of a ranking principle based on quantum probability theory, called the Quantum Probability Ranking Principle (QPRP), and we also provide an overview of the initial experiments performed employing the QPRP. The main difference between the QPRP and the classic Probability Ranking Principle, is that the QPRP implicitly captures the dependencies between documents by means of quantum interference". Subsequently, the optimal ranking of documents is not based solely on documents' probability of relevance but also on the interference with the previously ranked documents. Our research shows that the application of quantum theory to problems within information retrieval can lead to consistently better retrieval effectiveness, while still being simple, elegant and tractable.
Resumo:
In this thesis we investigate the use of quantum probability theory for ranking documents. Quantum probability theory is used to estimate the probability of relevance of a document given a user's query. We posit that quantum probability theory can lead to a better estimation of the probability of a document being relevant to a user's query than the common approach, i. e. the Probability Ranking Principle (PRP), which is based upon Kolmogorovian probability theory. Following our hypothesis, we formulate an analogy between the document retrieval scenario and a physical scenario, that of the double slit experiment. Through the analogy, we propose a novel ranking approach, the quantum probability ranking principle (qPRP). Key to our proposal is the presence of quantum interference. Mathematically, this is the statistical deviation between empirical observations and expected values predicted by the Kolmogorovian rule of additivity of probabilities of disjoint events in configurations such that of the double slit experiment. We propose an interpretation of quantum interference in the document ranking scenario, and examine how quantum interference can be effectively estimated for document retrieval. To validate our proposal and to gain more insights about approaches for document ranking, we (1) analyse PRP, qPRP and other ranking approaches, exposing the assumptions underlying their ranking criteria and formulating the conditions for the optimality of the two ranking principles, (2) empirically compare three ranking principles (i. e. PRP, interactive PRP, and qPRP) and two state-of-the-art ranking strategies in two retrieval scenarios, those of ad-hoc retrieval and diversity retrieval, (3) analytically contrast the ranking criteria of the examined approaches, exposing similarities and differences, (4) study the ranking behaviours of approaches alternative to PRP in terms of the kinematics they impose on relevant documents, i. e. by considering the extent and direction of the movements of relevant documents across the ranking recorded when comparing PRP against its alternatives. Our findings show that the effectiveness of the examined ranking approaches strongly depends upon the evaluation context. In the traditional evaluation context of ad-hoc retrieval, PRP is empirically shown to be better or comparable to alternative ranking approaches. However, when we turn to examine evaluation contexts that account for interdependent document relevance (i. e. when the relevance of a document is assessed also with respect to other retrieved documents, as it is the case in the diversity retrieval scenario) then the use of quantum probability theory and thus of qPRP is shown to improve retrieval and ranking effectiveness over the traditional PRP and alternative ranking strategies, such as Maximal Marginal Relevance, Portfolio theory, and Interactive PRP. This work represents a significant step forward regarding the use of quantum theory in information retrieval. It demonstrates in fact that the application of quantum theory to problems within information retrieval can lead to improvements both in modelling power and retrieval effectiveness, allowing the constructions of models that capture the complexity of information retrieval situations. Furthermore, the thesis opens up a number of lines for future research. These include: (1) investigating estimations and approximations of quantum interference in qPRP; (2) exploiting complex numbers for the representation of documents and queries, and; (3) applying the concepts underlying qPRP to tasks other than document ranking.
Resumo:
In this article we present the morphological and magnetic characterization of ferrofluid-impregnated biomimetic scaffolds made of hydroxyapatite and collagen used for bone reconstruction. We describe an innovative and simple impregnation process by which the ferrofluid is firmly adsorbed onto the hydroxyapatite/collagen scaffolds. The process confers sufficient magnetization to attract potential magnetic carriers, which may be used to transport bioactive agents that favour bone regeneration. The crystalline structure of the magnetite contained in the ferrofluid is preserved and its quantity, estimated from the weight gain due to the impregnation process, is consistent with that obtained from energy dispersive X-ray spectroscopy. The magnetization, measured with a superconducting quantum interference device, is uniform throughout the scaffolds, demonstrating the efficiency of the impregnation process. The field emission gun scanning electron microscopy characterization demonstrates that the process does not alter the morphology of the hydroxyapatite/collagen scaffolds, which is essential for the preservation of their bioactivity and consequently for their effectiveness in promoting bone formation.
Resumo:
Social tagging systems are shown to evidence a well known cognitive heuristic, the guppy effect, which arises from the combination of different concepts. We present some empirical evidence of this effect, drawn from a popular social tagging Web service. The guppy effect is then described using a quantum inspired formalism that has been already successfully applied to model conjunction fallacy and probability judgement errors. Key to the formalism is the concept of interference, which is able to capture and quantify the strength of the guppy effect.
Resumo:
This talk proceeds from the premise that IR should engage in a more substantial dialogue with cognitive science. After all, how users decide relevance, or how they chose terms to modify a query are processes rooted in human cognition. Recently, there has been a growing literature applying quantum theory (QT) to model cognitive phenomena. This talk will survey recent research, in particular, modelling interference effects in human decision making. One aspect of QT will be illustrated - how quantum entanglement can be used to model word associations in human memory. The implications of this will be briefly discussed in terms of a new approach for modelling concept combinations. Tentative links to human adductive reasoning will also be drawn. The basic theme behind this talk is QT can potentially provide a new genre of information processing models (including search) more aligned with human cognition.
Resumo:
Quantum theory has recently been employed to further advance the theory of information retrieval (IR). A challenging research topic is to investigate the so called quantum-like interference in users’ relevance judgement process, where users are involved to judge the relevance degree of each document with respect to a given query. In this process, users’ relevance judgement for the current document is often interfered by the judgement for previous documents, due to the interference on users’ cognitive status. Research from cognitive science has demonstrated some initial evidence of quantum-like cognitive interference in human decision making, which underpins the user’s relevance judgement process. This motivates us to model such cognitive interference in the relevance judgement process, which in our belief will lead to a better modeling and explanation of user behaviors in relevance judgement process for IR and eventually lead to more user-centric IR models. In this paper, we propose to use probabilistic automaton(PA) and quantum finite automaton (QFA), which are suitable to represent the transition of user judgement states, to dynamically model the cognitive interference when the user is judging a list of documents.
Resumo:
Much of our understanding of human thinking is based on probabilistic models. This innovative book by Jerome R. Busemeyer and Peter D. Bruza argues that, actually, the underlying mathematical structures from quantum theory provide a much better account of human thinking than traditional models. They introduce the foundations for modelling probabilistic-dynamic systems using two aspects of quantum theory. The first, "contextuality", is a way to understand interference effects found with inferences and decisions under conditions of uncertainty. The second, "entanglement", allows cognitive phenomena to be modelled in non-reductionist ways. Employing these principles drawn from quantum theory allows us to view human cognition and decision in a totally new light...
Resumo:
This article examines manual textual categorisation by human coders with the hypothesis that the law of total probability may be violated for difficult categories. An empirical evaluation was conducted to compare a one step categorisation task with a two step categorisation task using crowdsourcing. It was found that the law of total probability was violated. Both a quantum and classical probabilistic interpretations for this violation are presented. Further studies are required to resolve whether quantum models are more appropriate for this task.
Resumo:
The Quantum Probability Ranking Principle (QPRP) has been recently proposed, and accounts for interdependent document relevance when ranking. However, to be instantiated, the QPRP requires a method to approximate the interference" between two documents. In this poster, we empirically evaluate a number of different methods of approximation on two TREC test collections for subtopic retrieval. It is shown that these approximations can lead to significantly better retrieval performance over the state of the art.
Resumo:
While the Probability Ranking Principle for Information Retrieval provides the basis for formal models, it makes a very strong assumption regarding the dependence between documents. However, it has been observed that in real situations this assumption does not always hold. In this paper we propose a reformulation of the Probability Ranking Principle based on quantum theory. Quantum probability theory naturally includes interference effects between events. We posit that this interference captures the dependency between the judgement of document relevance. The outcome is a more sophisticated principle, the Quantum Probability Ranking Principle, that provides a more sensitive ranking which caters for interference/dependence between documents’ relevance.