86 resultados para Potassium fertilizers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic and controlled rate thermal analysis (CRTA) has been used to characterise alunites of formula [M(Al)3(SO4)2(OH)6 ] where M+ is the cations K+, Na+ or NH4+. Thermal decomposition occurs in a series of steps. (a) dehydration, (b) well defined dehydroxylation and (c) desulphation. CRTA offers a better resolution and a more detailed interpretation of water formation processes via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of water formation reveal the subtle nature of dehydration and dehydroxylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural changes in intercalated kaolinite after wet ball-milling were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), specific surface area (SSA) and Fourier Transform Infrared spectroscopy (FTIR). The X-ray diffraction pattern at room temperature indicated that the intercalation of potassium acetate into kaolinite causes an increase of the basal spacing from 0.718 to 1.42 nm, and with the particle size reduction, the surface area increased sharply with the intercalation and delamination by ball-milling. The wet ball-milling kaolinite after intercalation did not change the structural order, and the particulates have high aspect ratio according SEM images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition of halloysite-potassium acetate intercalation compound was investigated by thermogravimetric analysis and infrared emission spectroscopy. The X-ray diffraction patterns indicated that intercalation of potassium acetate into halloysite caused an increase of the basal spacing from 1.00 to 1.41 nm. The thermogravimetry results show that the mass losses of intercalation the compound occur in main three main steps, which correspond to (a) the loss of adsorbed water (b) the loss of coordination water and (c) the loss of potassium acetate and dehydroxylation. The temperature of dehydroxylation and dehydration of halloysite is decreased about 100 °C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the halloysite intercalation compound when the temperature is raised. The dehydration of the intercalation compound is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm-1. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm-1. Dehydration was completed by 300 °C and partial dehydroxylation by 350 °C. The inner hydroxyl group remained until around 500 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an immersion method for preparing the kaolinite-potassium acetate intercalation complexes. The effectiveness of intercalation and influencing factors were analysed and evaluated. The results show that the intercalation of kaolinite by potassium acetate is strongly related to crystallinity of kaolinite, concentration of intercalating agent solution, aging time and pH. The well-crystallized kaolinite is conducive to intercalation by potassium acetate. A higher concentration of intercalating agent (≥30%) can complete the intercalation in a short time (<12h), but at lower concentrations intercalation took significantly longer (≥144h). The weak alkaline condition of pH=10 proved to be the most suitable environment for the formation of intercalation complex. A good intercalated complex can be obtained at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal behavior and decomposition of kaolinite-potassium acetate intercalation complex was investigated through a combination of thermogravimetric analysis and infrared emission spectroscopy. Three main changes were observed at 48, 280, 323 and 460 °C which were attributed to (a) the loss of adsorbed water (b) loss of the water coordinated to acetate ion in the layer of kaolinite (c) loss of potassium acetate in the complex and (d) water through dehydroxylation. It is proposed that the KAc intercalation complex is stability except heating at above 300 °C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the kaolinite intercalation complex when the temperature is raised. The dehydration of the intercalation complex is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm-1. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm-1. Dehydration is completed by 400 °C and partial dehydroxylation by 650 °C. The inner hydroxyl group remained until around 700 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mid-infrared (MIR) and near-infrared (NIR) spectroscopy have been used to study the molecular structure of halloysite and potassium acetate intercalated halloysite and to determine the structural changes of halloysite through intercalation. The MIR spectra show all fundamental vibrations including the hydroxyl units, basic aluminosilicate framework and water molecules in the structure of halloysite and its intercalation complex. Comparison between halloysite and halloysite-potassium acetate intercalation complex shows almost all bands observed for halloysite are also observed for halloysite-potassium acetate intercalation complex apart from bands observed in the 1700-1300 cm-1 region, but with differences in band intensity. However, NIR, based on MIR spectra, provide sufficient evidence to analyze the structural changes of halloysite through intercalation. There are obvious differences between halloysite and halloysite-potassium acetate intercalation complex in the all spectral ranges. Therefore, the reproducibility of measurement and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for molecular structural analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of kaolinite-potassium acetate intercalation composite was prepared. The thermal behavior and decomposition of these composites were investigated by simultaneous differential scanning calorimetry-thermogravimetric analysis (DSC-TGA), X-ray diffraction (XRD) and Fourier-transformation infrared (FT-IR). The XRD pattern at room temperature indicated that intercalation of potassium acetate into kaolinite causes an increase of the basal spacing from 0.718 to 1.428nm. The peak intensity of the expanded phase of the composite decreased with heating above 300°C, and the basal spacing reduced to 1.19nm at 350°C and 0.718nm at 400°C. These were supported by DSC-TGA and FT-IR measurements, where the endothermic reactions are observed between 300 and 600°C. These reactions can be divided into two stages: 1) Removal of the intercalated molecules between 300-400°C. 2) Dehydroxylation of kaolinite between 400-600°C. Significant changes were observed in the infrared bands assigned to outer surface hydroxyl, inner surface hydroxyl, inner hydroxyl and hydrogen bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Alcoholism imposes a tremendous social and economic burden. There are relatively few pharmacological treatments for alcoholism, with only moderate efficacy, and there is considerable interest in identifying additional therapeutic options. Alcohol exposure alters SK-type potassium channel (SK) function in limbic brain regions. Thus, positive SK modulators such as chlorzoxazone (CZX), a US Food and Drug Administration–approved centrally acting myorelaxant, might enhance SK function and decrease neuronal activity, resulting in reduced alcohol intake. Methods We examined whether CZX reduced alcohol consumption under two-bottle choice (20% alcohol and water) in rats with intermittent access to alcohol (IAA) or continuous access to alcohol (CAA). In addition, we used ex vivo electrophysiology to determine whether SK inhibition and activation can alter firing of nucleus accumbens (NAcb) core medium spiny neurons. Results Chlorzoxazone significantly and dose-dependently decreased alcohol but not water intake in IAA rats, with no effects in CAA rats. Chlorzoxazone also reduced alcohol preference in IAA but not CAA rats and reduced the tendency for rapid initial alcohol consumption in IAA rats. Chlorzoxazone reduction of IAA drinking was not explained by locomotor effects. Finally, NAcb core neurons ex vivo showed enhanced firing, reduced SK regulation of firing, and greater CZX inhibition of firing in IAA versus CAA rats. Conclusions The potent CZX-induced reduction of excessive IAA alcohol intake, with no effect on the more moderate intake in CAA rats, might reflect the greater CZX reduction in IAA NAcb core firing observed ex vivo. Thus, CZX could represent a novel and immediately accessible pharmacotherapeutic intervention for human alcoholism. Key Words: Alcohol intake; intermittent; neuro-adaptation; nucleus accumbens; SK potassium channel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Both dietary magnesium depletion and potassium depletion (confirmed by tissue analysis) were induced in rats which were then compared with rats treated with chlorothiazide (250 mg/kg diet) and rats on a control synthetic diet. 2. Brain and muscle intracellular pH was measured by using a surface coil and [31P]-NMR to measure the chemical shift of inorganic phosphate. pH was also measured in isolated perfused hearts from control and magnesium-deficient rats. Intracellular magnesium status was assessed by measuring the chemical shift of β-ATP in brain. 3. There was no evidence for magnesium deficiency in the chlorothiazide-treated rats on tissue analysis or on chemical shift of β-ATP in brain. Both magnesium and potassium deficiency, but not chlorothiazide treatment, were associated with an extracellular alkalosis. 4. Magnesium deficiency led to an intracellular alkalosis in brain, muscle and heart. Chlorothiazide treatment led to an alkalosis in brain. Potassium deficiency was associated with a normal intracellular pH in brain and muscle. 5. Magnesium depletion and chlorothiazide treatment produce intracellular alkalosis by unknown mechanism(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilizing a mono-specific antiserum produced in rabbits to hog kidney aromatic L-amino acid decarboxylase (AADC), the enzyme was localized in rat kidney by immunoperoxidase staining. AADC was located predominantly in the proximal convoluted tubules; there was also weak staining in the distal convoluted tubules and collecting ducts. An increase in dietary potassium or sodium intake produced no change in density or distribution of AADC staining in kidney. An assay of AADC enzyme activity showed no difference in cortex or medulla with chronic potassium loading. A change in distribution or activity of renal AADC does not explain the postulated dopaminergic modulation of renal function that occurs with potassium or sodium loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition and dehydroxylation process of coal-bearing strata kaolinite–potassium acetate intercalation complex (CSKK) has been studied using X-ray diffraction (XRD), infrared spectroscopy (IR), thermal analysis, mass spectrometric analysis and infrared emission spectroscopy. The XRD results showed that the potassium acetate (KAc) have been successfully intercalated into coal-bearing strata kaolinite with an obvious basal distance increase of the first basal peak, and the positive correlation was found between the concentration of intercalation regent KAc and the degree of intercalation. As the temperature of the system is raised, the formation of KHCO3, KCO3 and KAlSiO4, which is derived from the thermal decomposition or phase transition of CSKK, is observed in sequence. The IR results showed that new bands appeared, the position and intensities shift can also be found when the concentration of intercalation agent is raised. The thermal analysis and mass spectrometric analysis results revealed that CSKK is stable below 300 °C, and the thermal decomposition products (H2O and CO2) were further proved by the mass spectrometric analysis. A comparison of thermal analysis results of original coal-bearing strata kaolinite and its intercalation complex gives new discovery that not only a new mass loss peak is observed at 285 °C, but also the temperature of dehydroxylation and dehydration of coal bearing strata kaolinite is decreased about 100 °C. This is explained on the basis of the interlayer space of the kaolinite increased obviously after being intercalated by KAc, which led to the interlayer hydrogen bonds weakened, enables the dehydroxylation from kaolinite surface more easily. Furthermore, the possible structural model for CSKK has been proposed, with further analysis required in order to prove the most possible structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FTIR spectra are reported of CO, CO2, H2 and H2O on silica-supported potassium, copper and potassium-copper catalysts. Adsorption of CO on a potassium/silica catalyst resulted in the formation of complexed CO moieties. Whereas exposure of CO2 to the same catalyst produced bands ascribed to CO2 -, bidentate carbonate and complexed CO species. Fully oxidised copper/silica surfaces gave bands due to CO on CuO and isolated Cu2+ cations on silica. Addition of potassium to this catalyst removed a peak attributed to CO adsorption on isolated Cu2+ cations and red-shifted the maximum ascribed to CO adsorbed on CuO. For a reduced copper/silica catalyst bands due to adsorbed CO on both high and low index planes were red-shifted by 10 cm-1 in the presence of potassium, although the strength of the Cu - CO bond did not appear to be increased concomitantly. An explanation in terms of an electrostatic effect between potassium and adsorbed CO is forwarded. A small maximum at ca. 1510 cm-1 for the reduced catalyst increased substantially upon exposing CO to a reoxidised promoted catalyst. Correspondingly, CO2 adsorption allowed the identification of two distinct carboxylate species, one of which was located at an interfacial site between copper and potassium oxide. Carboxylate species reacted with hydrogen at 295 K, on a reduced copper surface, to produce predominantly unidentate formate on potassium. In contrast no interaction was detected on a reoxidised copper catalyst at 295 K until a fraction of the copper surface was in a reduced state. Furthermore the interaction of polar water molecules with carboxylate species resulted in a perturbation of this structure which gave lower C----O stretching frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives The aim of this study was to evaluate the role of cardiac K+ channel gene variants in families with atrial fibrillation (AF). Background The K+ channels play a major role in atrial repolarization but single mutations in cardiac K+ channel genes are infrequently present in AF families. The collective effect of background K+ channel variants of varying prevalence and effect size on the atrial substrate for AF is largely unexplored. Methods Genes encoding the major cardiac K+ channels were resequenced in 80 AF probands. Nonsynonymous coding sequence variants identified in AF probands were evaluated in 240 control subjects. Novel variants were characterized using patch-clamp techniques and in silico modeling was performed using the Courtemanche atrial cell model. Results Nineteen nonsynonymous variants in 9 genes were found, including 11 rare variants. Rare variants were more frequent in AF probands (18.8% vs. 4.2%, p < 0.001), and the mean number of variants was greater (0.21 vs. 0.04, p < 0.001). The majority of K+ channel variants individually had modest functional effects. Modeling simulations to evaluate combinations of K+ channel variants of varying population frequency indicated that simultaneous small perturbations of multiple current densities had nonlinear interactions and could result in substantial (>30 ms) shortening or lengthening of action potential duration as well as increased dispersion of repolarization. Conclusions Families with AF show an excess of rare functional K+ channel gene variants of varying phenotypic effect size that may contribute to an atrial arrhythmogenic substrate. Atrial cell modeling is a useful tool to assess epistatic interactions between multiple variants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calcium-activated potassium ion channel gene (KCNN3) is located in the vicinity of the familial hemiplegic migraine type 2 locus on chromosome 1q21.3. This gene is expressed in the central nervous system and plays a role in neural excitability. Previous association studies have provided some, although not conclusive, evidence for involvement of this gene in migraine susceptibility. To elucidate KCNN3 involvement in migraine, we performed gene-wide SNP genotyping in a high-risk genetic isolate from Norfolk Island, a population descended from a small number of eighteenth century Isle of Man ‘Bounty Mutineer’ and Tahitian founders. Phenotype information was available for 377 individuals who are related through the single, well-defined Norfolk pedigree (96 were affected: 64 MA, 32 MO). A total of 85 SNPs spanning the KCNN3 gene were genotyped in a sub-sample of 285 related individuals (76 affected), all core members of the extensive Norfolk Island ‘Bounty Mutineer’ genealogy. All genotyping was performed using the Illumina BeadArray platform. The analysis was performed using the statistical program SOLAR v4.0.6 assuming an additive model of allelic effect adjusted for the effects of age and sex. Haplotype analysis was undertaken using the program HAPLOVIEW v4.0. A total of four intronic SNPs in the KCNN3 gene displayed significant association (P < 0.05) with migraine. Two SNPs, rs73532286 and rs6426929, separated by approximately 0.1 kb, displayed complete LD (r 2 = 1.00, D′ = 1.00, D′ 95% CI = 0.96–1.00). In all cases, the minor allele led to a decrease in migraine risk (beta coefficient = 0.286–0.315), suggesting that common gene variants confer an increased risk of migraine in the Norfolk pedigree. This effect may be explained by founder effect in this genetic isolate. This study provides evidence for association of variants in the KCNN3 ion channel gene with migraine susceptibility in the Norfolk genetic isolate with the rarer allelic variants conferring a possible protective role. This the first comprehensive analysis of this potential candidate gene in migraine and also the first study that has utilised the unique Norfolk Island large pedigree isolate to implicate a specific migraine gene. Studies of additional variants in KCNN3 in the Norfolk pedigree are now required (e.g. polyglutamine variants) and further analyses in other population data sets are required to clarify the association of the KCNN3 gene and migraine risk in the general outbred population.