37 resultados para Plantation
Resumo:
This study examined the potential for Fe mobilization and greenhouse gas (GHG, e.g. CO2, and CH4) evolution in SEQ soils associated with a range of plantation forestry practices and water-logged conditions. Intact, 30-cm-deep soil cores collected from representative sites were saturated and incubated for 35 days in the laboratory, with leachate and headspace gas samples periodically collected. Minimal Fe dissolution was observed in well-drained sand soils associated with mature, first-rotation Pinus and organic Fe complexation, whereas progressive Fe dissolution occurred over 14 days in clear-felled and replanted Pinus soils with low organic matter and non-crystalline Fe fractions. Both CO2 and CH4 effluxes were relatively lower in clear-felled and replanted soils compared with mature, first-rotation Pinus soils, despite the lack of statistically significant variations in total GHG effluxes associated with different forestry practices. Fe dissolution and GHG evolution in low-lying, water-logged soils adjacent to riparian and estuarine, native-vegetation buffer zones were impacted by mineral and physical soil properties. Highest levels of dissolved Fe and GHG effluxes resulted from saturation of riparian loam soils with high Fe and clay content, as well as abundant organic material and Fe-metabolizing bacteria. Results indicate Pinus forestry practices such as clear-felling and replanting may elevate Fe mobilization while decreasing CO2 and CH4 emissions from well-drained, SEQ plantation soils upon heavy flooding. Prolonged water-logging accelerates bacterially mediated Fe cycling in low-lying, clay-rich soils, leading to substantial Fe dissolution, organic matter mineralization, and CH4 production in riparian native-vegetation buffer zones.
Resumo:
In recent years, there has been a significant trend toward land acquisition in developing countries, establishing forestry plantations for offsetting carbon pollution generated in the Global North. Badged as “green economic development,” global carbon markets are often championed not only as solutions to climate change, but as drivers of positive development outcomes for local communities. But there is mounting evidence that these corporate land acquisitions for climate change mitigation—including forestry plantations—severely compromise not only local ecologies but also the livelihoods of the some of the world’s most vulnerable people living at subsistence level in rural areas in developing countries.
Resumo:
To maximize energetic savings, female bats often roost communally whilst pregnant or with non-volant dependents, whereas male bats more often roost alone; however, differences in selection of roosts by sex have not often been investigated. Better understanding of female colony locations could focus management to protect the majority of bats. New Zealand's long-tailed bat (Chalinolobus tuberculatus) roost in exotic plantation forest, where sex-specific roost selection has not been investigated, and therefore such management is not possible. We investigated sex-specific roost selection by long-tailed bats for the first time. Roosts and paired nonroosts were characterized testing predictions that males and females select roosts that differ from non-roosts, and males and females select different roosts. Females and males chose Pinus radiata roosts that differed from non-roost trees. Results suggest each sex chose roosts that maximized energetic savings. Female bats used roosts closer to water sources, that warmed earlier in the day, which allowed maintenance of high temperatures. Males appeared to choose roosts that allowed torpor use for long periods of the day. Males may be less selective with their roost locations than females, as they roosted further from water sources. This could allow persistence of male bats in marginal habitat. As all female long-tailed bats chose roosts within 150 m of waterways, management to protect bats could be focused here. To protect bats least able to escape when roosts are harvested, harvest of forest stands selected by female bats as roost sites should be planned when bats are not heavily pregnant nor have non-volant dependents.
Resumo:
Clear-fell harvest of forest concerns many wildlife biologists because of loss of vital resources such as roosts or nests, and effects on population viability. However, actual impact has not been quantified. Using New Zealand long-tailed bats (Chalinolobus tuberculatus) as a model species we investigated impacts of clear-fell logging on bats in plantation forest. C. tuberculatus roost within the oldest stands in plantation forest so it was likely roost availability would decrease as harvest operations occurred. We predicted that post-harvest: (1) roosting range sizes would be smaller, (2) fewer roosts would be used, and (3) colony size would be smaller. We captured and radiotracked C. tuberculatus to day-roosts in Kinleith Forest, an exotic plantation forest, over three southern hemisphere summers (Season 1 October 2006–March 2007; Season 2 November 2007–March 2008; and Season 3 November 2008–March 2009). Individual roosting ranges (100% MCPs) post harvest were smaller than those in areas that had not been harvested, and declined in area during the 3 years. Following harvest, bats used fewer roosts than those in areas that had not been harvested. Over 3 years 20.7% of known roosts were lost: 14.5% due to forestry operations and 6.2% due to natural tree fall. Median colony size was 4.0 bats (IQR = 2.0–8.0) and declined during the study, probably because of locally high levels of roost loss. Post harvest colonies were smaller than colonies in areas that had not been harvested. Together, these results suggest the impact of clear-fell harvest on long-tailed bat populations is negative.
Resumo:
Individuals' home ranges are constrained by resource distribution and density, population size, and energetic requirements. Consequently, home ranges and habitat selection may vary between individuals of different sex and reproductive conditions. Whilst home ranges of bats are well-studied in native habitats, they are often not well understood in modified landscapes, particularly exotic plantation forests. Although Chalinolobus tuberculatus (Vespertilionidae, Chiroptera) are present in plantation forests throughout New Zealand their home ranges have only been studied in native forest and forest-agricultural mosaic and no studies of habitat selection that included males had occurred in any habitat type. Therefore, we investigated C. tuberculatus home range and habitat selection within exotic plantation forest. Home range sizes did not differ between bats of different reproductive states. Bats selected home ranges with higher proportions of relatively old forest than was available. Males selected edges with open unplanted areas within their home ranges, which females avoided. We suggest males use these edges, highly profitable foraging areas with early evening peaks in invertebrate abundance, to maintain relatively low energetic demands. Females require longer periods of invertebrate activity to fulfil their needs so select older stands for foraging, where invertebrate activity is higher. These results highlight additional understanding gained when data are not pooled across sexes. Mitigation for harvest operations could include ensuring that areas suitable for foraging and roosting are located within a radius equal to the home range of this bat species.
Resumo:
Environmental certification schemes have stimulated increasing interest in biodiversity and its management within exotic plantation forests. These schemes expect management to be scientifically-based, even though little is known about how often, or which, native species use exotic plantation forests. Greater knowledge of the ecology of native species within exotic plantation forests is required to advise management and reduce risks to native species, particularly those that are rare, such as the New Zealand long-tailed bat (Chalinolobus tuberculatus). Long-tailed bats use exotic plantation forests throughout New Zealand but need protection from the impacts of forest management, and particularly clear-fell harvest, that is achievable only through a better understanding of their biology. The consequences of the current reduced re-planting, and the conversion of plantation forests into pasture resulting in smaller forested areas, should not be ignored because they may be associated with reductions in long-tailed bat populations. We review the current knowledge of long-tailed bats' use of exotic plantation forests, and report for the first time which exotic plantations long-tailed bats are known to use. We make recommendations for the design of monitoring programmes to detect long-tailed bats within plantation forests, and for research into the effects of forest management, especially logging, and comment on the likely impacts of reductions in forested areas on long-tailed bats.
Resumo:
This article examines the need for a marketing approach to support the expansion of trade in Australian forest Products. Opportunities available for trade in hoop pine ( Araucaria cunninghamii), a Queensland species of timber, are examined. Markets within China and Japan are found to have substantial potential end product uses for the plantation timber.
Resumo:
Although timber plantations and forests are classified as forms of agricultural production, the ownership of this land classification is not limited to rural producers. Timber plantations and forests are now regarded as a long-term investment with both institutional and absentee owners. While the NCREIF property indices have been the benchmarks for the measurement of the performance of the commercial property market in the UK, for many years the IPD timberland index has recently emerged as the U.K. forest and timberland performance indicator. The IPD Forest index incorporates 126 properties over five regions in the U.K. This paper will utilise the IPD Forestry Index to examine the performance of U.K. timber plantations and forests over the period 1981-2004. In particular, issues to be critically assessed include plantation and forest performance analysis, comparative investment analysis, and the role of plantations and forests in investment portfolios, the risk reduction and portfolio benefits of plantations and forests in mixed-asset portfolios and the strategic investment significance of U.K. timberlands.
Resumo:
Although timber plantations and forests are classified as forms of agricultural production, the ownership of this land classification is not limited to rural producers. Timber plantations and forests are now regarded as a long-term investment with both institutional and absentee owners. While the NCREIF property indices have been the benchmarks for the measurement of the performance of the commercial property market in the UK, for many years the IPD timberland index has recently emerged as the U.K. forest and timberland performance indicator. The IPD Forest index incorporates 126 properties over five regions in the U.K. This paper will utilise the IPD Forestry Index to examine the performance of U.K. timber plantations and forests over the period 1981-2004. In particular, issues to be critically assessed include plantation and forest performance analysis, comparative investment analysis, and the role of plantations and forests in investment portfolios, the risk reduction and portfolio benefits of plantations and forests in mixed-asset portfolios and the strategic investment significance of U.K. timberlands.
Resumo:
Abstract A field survey for natural enemies of Paropsis atomaria was conducted at two south-eastern Queensland Eucalyptus cloeziana plantation sites during 2004–2005. Primary egg and larval parasitoids and associated hyperparasitoids were identified to genus or species, and parasitism rates were determined throughout the season. Predators were identified to family level but their impact was not quantified. P. atomaria adults were also examined as potential hosts for parasitic mites and nematodes. An undescribed species of Neopolycystus (Pteromalidae) was the major primary egg parasitoid species reared from egg batches, parasitising half of all egg batches collected. Three hyperparasitoid species (Baeoanusia albifunicle (Encyrtidae), Neblatticida sp. (Encyrtidae) and Aphaneromella sp. (Platygasteridae) were present, representing around one-quarter to one-third of all emergent wasps; this is the first host association record for Neopolycystus–B. albifunicle. In contrast to populations of P. atomaria from the Australian Capital Territory, primary larval parasitism was very low, around 1%, and attributable only to the tachinid flies Anagonia sp. and Paropsivora sp. However, the presence of the sit-and-wait larval hyperparasitoid, Perilampus sp. (Perilampidae) was high, emerging from around 17% of tachinid pupae, with planidia infesting a further 40% of unparasitised hosts. Three species of podapolipid mites parasitised sexually mature P. atomaria adults, while no nematodes were found in this study. Spiders were the most common predators and their abundance was positively correlated with P. atomaria adult and egg numbers. Although natural enemy species composition was identical between our two study sites, significant differences in abundance and frequency were found between sites
Resumo:
Abstract Neopolycystus sp. is the only primary egg parasitoid associated with the pest beetle Paropsis atomaria in subtropical eucalypt plantations, but its impact on its host populations is unknown. The simplified ecosystem represented by the plantation habitat, lack of interspecific competition for host and parasitoid, and the multivoltinism of the host population makes this an ideal system for quantifying the direct and indirect effects of egg parasitism, and hence, effects on host population dynamics. Within-, between- and overall-egg-batch parasitism rates were determined at three field sites over two field seasons, and up to seven host generations. The effect of exposure time (egg batch age), host density proximity to native forest and water sources on egg parasitism rates was also tested. Neopolycystus sp. exerts a significant influence on P. atomaria populations in Eucalyptus cloeziana. plantations in south-eastern Queensland, causing the direct (13%) and indirect (15%) mortality of almost one-third of all eggs in the field. Across seasons and generations, 45% of egg batches were parasitised, with a within-batch parasitism rate of around 30%. Between-batch parasitism increased up to 5–6 days after oviposition in the field, although within-batch parasitism rates generally did not. However, there were few apparent patterns to egg parasitism, with rates often varying significantly between sites and seasons.
Resumo:
Paropsis atomaria is a recently emerged pest of eucalypt plantations in subtropical Australia. Its broad host range of at least 20 eucalypt species and wide geographical distribution provides it the potential to become a serious forestry pest both within Australia and, if accidentally introduced, overseas. Although populations of P. atomaria are genetically similar throughout its range, population dynamics differ between regions. Here, we determine temperature-dependent developmental requirements using beetles sourced from temperate and subtropical zones by calculating lower temperature thresholds, temperature-induced mortality, and day-degree requirements. We combine these data with field mortality estimates of immature life stages to produce a cohort-based model, ParopSys, using DYMEX™ that accurately predicts the timing, duration, and relative abundance of life stages in the field and number of generations in a spring–autumn (September–May) field season. Voltinism was identified as a seasonally plastic trait dependent upon environmental conditions, with two generations observed and predicted in the Australian Capital Territory, and up to four in Queensland. Lower temperature thresholds for development ranged between 4 and 9 °C, and overall development rates did not differ according to beetle origin. Total immature development time (egg–adult) was approximately 769.2 ± S.E. 127.8 DD above a lower temperature threshold of 6.4 ± S.E. 2.6 °C. ParopSys provides a basic tool enabling forest managers to use the number of generations and seasonal fluctuations in abundance of damaging life stages to estimate the pest risk of P. atomaria prior to plantation establishment, and predict the occurrence and duration of damaging life stages in the field. Additionally, by using local climatic data the pest potential of P. atomaria can be estimated to predict the risk of it establishing if accidentally introduced overseas. Improvements to ParopSys’ capability and complexity can be made as more biological data become available.
Resumo:
Timberland is seen as a long-term investment which has recently received increased institutional investor attention in many countries and potentially provides added value in a mixed-asset portfolio. Using the National Council of Real Estate Investment Fiduciaries (NCREIF) timberland series, this paper analyses the risk-adjusted performance and portfolio diversification benefits of timberland in the United States over the period of 1987-2007. U.S. timberland is seen to have been a strongly performed asset class with significant portfolio diversification benefits over this period; with a significant portfolio role separate to that of real estate. However, recent years have seen reduced risk-adjusted returns, with some loss of portfolio diversification benefits of timberland with stocks and real estate. Global drivers are likely to see increased future demand for timberland investment.