139 resultados para Planning and control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, unmanned aerial vehicles (UAVs) have been widely used in combat, and their potential applications in civil and commercial roles are also receiving considerable attention by industry and the research community. There are numerous published reports of UAVs used in Earth science missions [1], fire-fighting [2], and border security [3] trials, with other speculative deployments, including applications in agriculture, communications, and traffic monitoring. However, none of these UAVs can demonstrate an equivalent level of safety to manned aircraft, particularly in the case of an engine failure, which would require an emergency or forced landing. This may be arguably the main factor that has prevented these UAV trials from becoming full-scale commercial operations, as well as restricted operations of civilian UAVs to only within segregated airspace.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a comprehensive approach to the planning of distribution networks and the control of microgrids. Firstly, a Modified Discrete Particle Swarm Optimization (MDPSO) method is used to optimally plan a distribution system upgrade over a 20 year planning period. The optimization is conducted at different load levels according to the anticipated load duration curve and integrated over the system lifetime in order to minimize its total lifetime cost. Since the optimal solution contains Distributed Generators (DGs) to maximize reliability, the DG must be able to operate in islanded mode and this leads to the concept of microgrids. Thus the second part of the paper reviews some of the challenges of microgrid control in the presence of both inertial (rotating direct connected) and non-inertial (converter interfaced) DGs. More specifically enhanced control strategies based on frequency droop are proposed for DGs to improve the smooth synchronization and real power sharing minimizing transient oscillations in the microgrid. Simulation studies are presented to show the effectiveness of the control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of hurdles must be overcome in order to integrate unmanned aircraft into civilian airspace for routine operations. The ability of the aircraft to land safely in an emergency is essential to reduce the risk to people, infrastructure and aircraft. To date, few field-demonstrated systems have been presented that show online re-planning and repeatability from failure to touchdown. This paper presents the development of the Guidance, Navigation and Control (GNC) component of an Automated Emergency Landing System (AELS) intended to address this gap, suited to a variety of fixed-wing aircraft. Field-tested on both a fixed-wing UAV and Cessna 172R during repeated emergency landing experiments, a trochoid-based path planner computes feasible trajectories and a simplified control system executes the required manoeuvres to guide the aircraft towards touchdown on a predefined landing site. This is achieved in zero-thrust conditions with engine forced to idle to simulate failure. During an autonomous landing, the controller uses airspeed, inertial and GPS data to track motion and maintains essential flight parameters to guarantee flyability, while the planner monitors glide ratio and re-plans to ensure approach at correct altitude. Simulations show reliability of the system in a variety of wind conditions and its repeated ability to land within the boundary of a predefined landing site. Results from field-tests for the two aircraft demonstrate the effectiveness of the proposed GNC system in live operation. Results show that the system is capable of guiding the aircraft to close proximity of a predefined keyhole in nearly 100% of cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A forced landing is an unscheduled event in flight requiring an emergency landing, and is most commonly attributed to engine failure, failure of avionics or adverse weather. Since the ability to conduct a successful forced landing is the primary indicator for safety in the aviation industry, automating this capability for unmanned aerial vehicles (UAVs) will help facilitate their integration into, and subsequent routine operations over civilian airspace. Currently, there is no commercial system available to perform this task; however, a team at the Australian Research Centre for Aerospace Automation (ARCAA) is working towards developing such an automated forced landing system. This system, codenamed Flight Guardian, will operate onboard the aircraft and use machine vision for site identification, artificial intelligence for data assessment and evaluation, and path planning, guidance and control techniques to actualize the landing. This thesis focuses on research specific to the third category, and presents the design, testing and evaluation of a Trajectory Generation and Guidance System (TGGS) that navigates the aircraft to land at a chosen site, following an engine failure. Firstly, two algorithms are developed that adapts manned aircraft forced landing techniques to suit the UAV planning problem. Algorithm 1 allows the UAV to select a route (from a library) based on a fixed glide range and the ambient wind conditions, while Algorithm 2 uses a series of adjustable waypoints to cater for changing winds. A comparison of both algorithms in over 200 simulated forced landings found that using Algorithm 2, twice as many landings were within the designated area, with an average lateral miss distance of 200 m at the aimpoint. These results present a baseline for further refinements to the planning algorithms. A significant contribution is seen in the design of the 3-D Dubins Curves planning algorithm, which extends the elementary concepts underlying 2-D Dubins paths to account for powerless flight in three dimensions. This has also resulted in the development of new methods in testing for path traversability, in losing excess altitude, and in the actual path formation to ensure aircraft stability. Simulations using this algorithm have demonstrated lateral and vertical miss distances of under 20 m at the approach point, in wind speeds of up to 9 m/s. This is greater than a tenfold improvement on Algorithm 2 and emulates the performance of manned, powered aircraft. The lateral guidance algorithm originally developed by Park, Deyst, and How (2007) is enhanced to include wind information in the guidance logic. A simple assumption is also made that reduces the complexity of the algorithm in following a circular path, yet without sacrificing performance. Finally, a specific method of supplying the correct turning direction is also used. Simulations have shown that this new algorithm, named the Enhanced Nonlinear Guidance (ENG) algorithm, performs much better in changing winds, with cross-track errors at the approach point within 2 m, compared to over 10 m using Park's algorithm. A fourth contribution is made in designing the Flight Path Following Guidance (FPFG) algorithm, which uses path angle calculations and the MacCready theory to determine the optimal speed to fly in winds. This algorithm also uses proportional integral- derivative (PID) gain schedules to finely tune the tracking accuracies, and has demonstrated in simulation vertical miss distances of under 2 m in changing winds. A fifth contribution is made in designing the Modified Proportional Navigation (MPN) algorithm, which uses principles from proportional navigation and the ENG algorithm, as well as methods specifically its own, to calculate the required pitch to fly. This algorithm is robust to wind changes, and is easily adaptable to any aircraft type. Tracking accuracies obtained with this algorithm are also comparable to those obtained using the FPFG algorithm. For all three preceding guidance algorithms, a novel method utilising the geometric and time relationship between aircraft and path is also employed to ensure that the aircraft is still able to track the desired path to completion in strong winds, while remaining stabilised. Finally, a derived contribution is made in modifying the 3-D Dubins Curves algorithm to suit helicopter flight dynamics. This modification allows a helicopter to autonomously track both stationary and moving targets in flight, and is highly advantageous for applications such as traffic surveillance, police pursuit, security or payload delivery. Each of these achievements serves to enhance the on-board autonomy and safety of a UAV, which in turn will help facilitate the integration of UAVs into civilian airspace for a wider appreciation of the good that they can provide. The automated UAV forced landing planning and guidance strategies presented in this thesis will allow the progression of this technology from the design and developmental stages, through to a prototype system that can demonstrate its effectiveness to the UAV research and operations community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This model is used to construct a control policy for navigation to a goal region in a terrain map built using an on-board RGB-D camera. The terrain includes flat ground, small rocks, and non-traversable rocks. We report the results of 200 simulated and 35 experimental trials that validate the approach and demonstrate the value of considering control uncertainty in maintaining platform safety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The core business of public health is to protect and promote health in the population. Public health planning is the means to maximise these aspirations. Health professionals develop plans to address contemporary health priorities as the evidence about changing patterns of mortality and morbidity is presented. Officials are also alert to international trends in patterns of disease that have the potential to affect the health of Australians. Integrated planning and preparation is currently underway involving all emergency health services, hospitals and population health units to ensure Australia's quick and efficient response to any major infectious disease outbreak, such as avian influenza (bird flu). Public health planning for the preparations for the Sydney Olympics and Paralympic Games in 2000 took almost three years. ‘Its major components included increased surveillance of communicable disease; presentations to sentinel emergency departments; medical encounters at Olympic venues; cruise ship surveillance; environmental and food safety inspections; bioterrorism surveillance and global epidemic intelligence’ (Jorm et al 2003, 102). In other words, the public health plan was developed to ensure food safety, hospital capacity, safe crowd control, protection against infectious diseases, and an integrated emergency and disaster plan. We have national and state plans for vaccinating children against infectious diseases in childhood; plans to promote dental health for children in schools; and screening programs for cervical, breast and prostate cancer. An effective public health response to a change in the distribution of morbidity and mortality requires planning. All levels of government plan for the public’s health. Local governments (councils) ensure healthy local environments to protect the public’s health. They plan parks for recreation, construct traffic-calming devices near schools to prevent childhood accidents, build shade structures and walking paths, and even embed drafts/chess squares in tables for people to sit and play. Environmental Health officers ensure food safety in restaurants and measure water quality. These public health measures attempt to promote the quality of life of residents. Australian and state governments produce plans that protect and promote health through various policy and program initiatives and innovations. To be effective, program plans need to be evaluated. However, building an integrated evaluation plan into a program plan is often forgotten, as planning and evaluation are seen as two distinct entities. Consequently, it is virtually impossible to measure, with any confidence, the extent to which a program has achieved its goals and objectives. This chapter introduces you to the concepts of public health program planning and evaluation. Case studies and reflection questions are presented to illustrate key points. As various authors use different terminology to describe the same concepts/actions of planning and evaluation, the glossary at the back of this book will help you to clarify the terms used in this chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globally, the main contributors to morbidity and mortality are chronic diseases, including cardiovascular disease and diabetes. Chronic diseases are costly and partially avoidable, with around sixty percent of deaths and nearly fifty percent of the global disease burden attributable to these conditions. By 2020, chronic illnesses will likely be the leading cause of disability worldwide. Existing health care systems, both national and international, that focus on acute episodic health conditions, cannot address the worldwide transition to chronic illness; nor are they appropriate for the ongoing care and management of those already afflicted with chronic diseases. International and Australian strategic planning documents articulate similar elements to manage chronic disease; including the need for aligning sectoral policies for health, forming partnerships and engaging communities in decision-making. The Australian National Chronic Disease Strategy focuses on four core areas for managing chronic disease; prevention across the continuum, early detection and treatment, integrated and coordinated care, and self-management. Such a comprehensive approach incorporates the entire population continuum, from the ‘healthy’, to those with risk factors, through to people suffering from chronic conditions and their sequelae. This chapter examines comprehensive approach to the prevention, management and care of the population with non-communicable, chronic diseases and communicable diseases. It analyses models of care in the context of need, service delivery options and the potential to prevent or manage early intervention for chronic and communicable diseases. Approaches to chronic diseases require integrated approaches that incorporate interventions targeted at both individuals and populations, and emphasise the shared risk factors of different conditions. Communicable diseases are a common and significant contributor to ill health throughout the world. In many countries, this impact has been minimised by the combined efforts of preventative health measures and improved treatment of infectious diseases. However in underdeveloped nations, communicable diseases continue to contribute significantly to the burden of disease. The aim of this chapter is to outline the impact that chronic and communicable diseases have on the health of the community, the public health strategies that are used to reduce the burden of those diseases and the old and emerging risks to public health from infectious diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to provide a review of the theoretical and research literature on the ways in which financial planning can enhance well-being. In reviewing the literature, the paper develops a conceptual framework for thinking about the extended value of financial planning, beyond financial outcomes, by examining the process of planning in the financial domain and its relationship to life satisfaction, living an intentional life, attainment of life goals, and the development of a sense of mastery. An essential element of psychological well-being is engagement in life tasks and roles. Planning can be considered a life management strategy that enables individuals to control and structure their lives. Having meaningful goals and the plans to achieve those goals enable individuals to experience higher levels of life engagement and well-being (MacLeod et al., 2008). Recent research on well-being suggests that domain-specific behaviours contribute to domain-specific satisfactions, which in turn contribute to an individual’s overall satisfaction with life (Easterlin, 2003; 2006). Thus changes in domain satisfaction, such as financial satisfaction, are likely to effect changes in life satisfaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main focus of this paper is on the motion planning problem for an under-actuated, submerged, Omni-directional autonomous vehicle. Underactuation is extremely important to consider in ocean research and exploration. Battery failure, actuator malfunction and electronic shorts are a few reasons that may cause the vehicle to lose direct control of one or more degrees-of-freedom. Underactuation is also critical to understand when designing vehicles for specific tasks, such as torpedo-shaped vehicles. An under-actuated vehicle is less controllable, and hence, the motion planning problem is more difficult. Here, we present techniques based on geometric control to provide solutions to the under-actuated motion planning problem for a submerged underwater vehicle. Our results are validated with experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation is based on theoretical study and experiments which extend geometric control theory to practical applications within the field of ocean engineering. We present a method for path planning and control design for underwater vehicles by use of the architecture of differential geometry. In addition to the theoretical design of the trajectory and control strategy, we demonstrate the effectiveness of the method via the implementation onto a test-bed autonomous underwater vehicle. Bridging the gap between theory and application is the ultimate goal of control theory. Major developments have occurred recently in the field of geometric control which narrow this gap and which promote research linking theory and application. In particular, Riemannian and affine differential geometry have proven to be a very effective approach to the modeling of mechanical systems such as underwater vehicles. In this framework, the application of a kinematic reduction allows us to calculate control strategies for fully and under-actuated vehicles via kinematic decoupled motion planning. However, this method has not yet been extended to account for external forces such as dissipative viscous drag and buoyancy induced potentials acting on a submerged vehicle. To fully bridge the gap between theory and application, this dissertation addresses the extension of this geometric control design method to include such forces. We incorporate the hydrodynamic drag experienced by the vehicle by modifying the Levi-Civita affine connection and demonstrate a method for the compensation of potential forces experienced during a prescribed motion. We present the design method for multiple different missions and include experimental results which validate both the extension of the theory and the ability to implement control strategies designed through the use of geometric techniques. By use of the extension presented in this dissertation, the underwater vehicle application successfully demonstrates the applicability of geometric methods to design implementable motion planning solutions for complex mechanical systems having equal or fewer input forces than available degrees of freedom. Thus, we provide another tool with which to further increase the autonomy of underwater vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parents are at risk for inactivity; however, research into understanding parental physical activity (PA) is scarce. We integrated self-determined motivation, planning, and the theory of planned behavior (TPB) to better understand parental PA. Parents (252 mothers, 206 fathers) completed a main questionnaire assessing measures underpinning these constructs and a 1-week follow-up of PA behavior to examine whether self-determined motivation indirectly influenced intention via the TPB variables (i.e., attitude, subjective norm, and perceived behavioral control) and intention indirectly influenced behavior via planning. We found self-determined motivation on intention was fully mediated by the TPB variables and intention on behavior was partially mediated by the planning variables. In addition, slight differences in the model’s paths between the sexes were revealed. The results illustrate the range of important determinants of parental PA and provide support for the integrated model in explaining PA decision making as well as the importance of examining sex differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This mobility prediction model is trained using sample executions of motion primitives on representative terrain, and predicts the future outcome of control actions on similar terrain. Using Gaussian process regression allows us to exploit its inherent measure of prediction uncertainty in planning. We integrate mobility prediction into a Markov decision process framework and use dynamic programming to construct a control policy for navigation to a goal region in a terrain map built using an on-board depth sensor. We consider both rigid terrain, consisting of uneven ground, small rocks, and non-traversable rocks, and also deformable terrain. We introduce two methods for training the mobility prediction model from either proprioceptive or exteroceptive observations, and report results from nearly 300 experimental trials using a planetary rover platform in a Mars-analogue environment. Our results validate the approach and demonstrate the value of planning under uncertainty for safe and reliable navigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review article discusses form-based planning an din details analise the following books: Stepehn Marshall (2012) Urban Coding and Planning (Routledge, New York, USA, 272pp. pISBN 1135689202). Emily Talen (2012) City Rules: How Regulations Affects Urban Form (Island Press, Washington DC, USA, 254 pp. ISBN 9781597266925). Richard Tomlinson (2012) Australia’s Unintended Cities: the Impact of Housing on Urban Development (CSIRO Publishing, Collingwood, Australia, 194pp. ISBN 9780643103771). The history of the city has been written and rewritten many times: the seminal works of Benevolo (1980) and Mumford (1989) reconstruct how settlements, particularly their urban form, have changed over centuries. Rowe and Koetter (1978), Kostof (1991, 1992), Krier (2003), and Rossi and Eisenmann (1982) address instead the components that shape the urban environment: the architect can aggregate and manipulate squares, streets, parks and public buildings to control urban design. Generally these studies aim to reveal the secret of the traditional city in contraposition to the contemporary townscape characterized by planning and zoning, which are generally regarded as problematic and sterile (Woodward, 2013). The ‘secret rules’ that have shaped our cities have a bearing on the relationship of spaces, mixed uses, public environments and walkability (Walters, 2011)...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This invention concerns the control of rotating excavation machinery, for instance to avoid collisions with obstacles. In a first aspect the invention is a control system for autonomous path planning in excavation machinery, comprising: A map generation subsystem to receive data from an array of disparate and complementary sensors to generate a 3-Dimensional digital terrain and obstacle map referenced to a coordinate frame related to the machine's geometry, during normal operation of the machine. An obstacle detection subsystem to find and identify obstacles in the digital terrain and obstacle map, and then to refine the map by identifying exclusion zones that are within reach of the machine during operation. A collision detection subsystem that uses knowledge of the machine's position and movements, as well as the digital terrain and obstacle map, to identify and predict possible collisions with itself or other obstacles, and then uses a forward motion planner to predict collisions in a planned path. And, a path planning subsystem that uses information from the other subsystems to vary planned paths to avoid obstacles and collisions. In other aspects the invention is excavation machinery including the control system; a method for control of excavation machinery; and firmware and software versions of the control system.