140 resultados para Physics engine


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In microscopic traffic simulators, the interaction between vehicles is considered. The dynamics of the system then becomes an emergent property of the interaction between its components. Such interactions include lane-changing, car-following behaviours and intersection management. Although, in some cases, such simulators produce realistic prediction, they do not allow for an important aspect of the dynamics, that is, the driver-vehicle interaction. This paper introduces a physically sound vehicle-driver model for realistic microscopic simulation. By building a nanoscopic traffic simulation model that uses steering angle and throttle position as parameters, the model aims to overcome unrealistic acceleration and deceleration values, as found in various microscopic simulation tools. A physics engine calculates the driving force of the vehicle, and the preliminary results presented here, show that, through a realistic driver-vehicle-environment simulator, it becomes possible to model realistic driver and vehicle behaviours in a traffic simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exhaust emissions from thirteen compressed natural gas (CNG) and nine ultralow sulphur diesel in-service transport buses were monitored on a chassis dynamometer. Measurements were carried out at idle and at three steady engine loads of 25%, 50% and 100% of maximum power at a fixed speed of 60 kmph. Emission factors were estimated for particle mass and number, carbon dioxide and oxides of nitrogen for two types of CNG buses (Scania and MAN, compatible with Euro 2 and 3 emission standards, respectively) and two types of diesel buses (Volvo Pre-Euro/Euro1 and Mercedez OC500 Euro3). All emission factors increased with load. The median particle mass emission factor for the CNG buses was less than 1% of that from the diesel buses at all loads. However, the particle number emission factors did not show a statistically significant difference between buses operating on the two types of fuel. In this paper, for the very first time, particle number emission factors are presented at four steady state engine loads for CNG buses. Median values ranged from the order of 1012 particles min-1 at idle to 1015 particles km-1 at full power. Most of the particles observed in the CNG emissions were in the nanoparticle size range and likely to be composed of volatile organic compounds The CO2 emission factors were about 20% to 30% greater for the diesel buses over the CNG buses, while the oxides of nitrogen emission factors did not show any difference due to the large variation between buses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents techniques which can lead to diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outline, including time-frequency analysis and selection of optimum frequency band.The results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals and the effects of changing parameter values are also outlined. The results on separation of RMS signals show thsi technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events within the combustion process of multi-cylinder diesel engines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibration analysis has been a prime tool in condition monitoring of rotating machines, however, its application to internal combustion engines remains a challenge because engine vibration signatures are highly non-stationary that are not suitable for popular spectrum-based analysis. Signal-to-noise ratio is a main concern in engine signature analysis due to severe background noise being generated by consecutive mechanical events, such as combustion, valve opening and closing, especially in multi-cylinder engines. Acoustic Emission (AE) has been found to give excellent signal-to-noise ratio allowing discrimination of fine detail of normal or abnormal events during a given cycle. AE has been used to detect faults, such as exhaust valve leakage, fuel injection behaviour, and aspects of the combustion process. This paper presents a review of AE application to diesel engine monitoring and preliminary investigation of AE signature measured on an 18-cylinder diesel engine. AE is compared with vibration acceleration for varying operating conditions: load and speed. Frequency characteristics of AE from those events are analysed in time-frequency domain via short time Fourier trasform. The result shows a great potential of AE analysis for detection of various defects in diesel engines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 4-cylinder Ford 2701C test engine was used in this study to explore the impact of ethanol fumigation on gaseous and particle emission concentrations. The fumigation technique delivered vaporised ethanol into the intake manifold of the engine, using an injector, a pump and pressure regulator, a heat exchanger for vaporising ethanol and a separate fuel tank and lines. Gaseous (Nitric oxide (NO), Carbon monoxide (CO) and hydrocarbons (HC)) and particulate emissions (particle mass (PM2.5) and particle number) testing was conducted at intermediate speed (1700 rpm) using 4 load settings with ethanol substitution percentages ranging from 10-40 % (by energy). With ethanol fumigation, NO and PM2.5 emissions were reduced, whereas CO and HC emissions increased considerably and particle number emissions increased at most test settings. It was found that ethanol fumigation reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of NO. PM2.5 emissions were reduced with ethanol fumigation, as ethanol has a very low “sooting” tendency. This is due to the higher hydrogen-to-carbon ratio of this fuel, and also because ethanol does not contain aromatics, both of which are known soot precursors. The use of a diesel oxidation catalyst (as an after-treatment device) is recommended to achieve a reduction in the four pollutants that are currently regulated for compression ignition engines. The increase in particle number emissions with ethanol fumigation was due to the formation of volatile (organic) particles; consequently, using a diesel oxidation catalyst will also assist in reducing particle number emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses commonly encountered diesel engine problems and the underlying combustion related faults. Also discussed are the methods used in previous studies to simulate diesel engine faults and the initial results of an experimental simulation of a common combustion related diesel engine fault, namely diesel engine misfire. This experimental fault simulation represents the first step towards a comprehensive investigation and analysis into the characteristics of acoustic emission signals arising from combustion related diesel engine faults. Data corresponding to different engine running conditions was captured using in-cylinder pressure, vibration and acoustic emission transducers along with both crank-angle encoder and top-dead centre signals. Using these signals, it was possible to characterise the diesel engine in-cylinder pressure profiles and the effect of different combustion conditions on both vibration and acoustic emission signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%–84%) reductions were achieved at half load operation (1% increase–43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the effect of engine backpressure on the performance and emissions of a CI engine under different speed and load conditions. A 4-stroke single cylinder naturally aspirated direct injection (DI) diesel engine was used for the investigation with the backpressure of 0, 40, 60 and 80 mm of Hg at engine speed of 600, 950 and 1200 rpm. Two parameters were measured during the engine operation: one is engine performance (brake thermal efficiency and brake specific fuel consumption), and the other is the exhaust emissions (NOx, CO and odor). NOx and CO emission were measured by flue gas analyzer (IMR 1400). The engine backpressure produced by the flow regulating valve in the exhaust line was measured by Hg (mercury) manometer. The result showed that, the brake thermal efficiency and brake specific fuel consumption (bsfc) are almost unchanged with increasing backpressure up to 40 mm of Hg pressure for all engine speed and load conditions. The NOx emission became constant or a little decreased with increasing backpressure. The formation of CO was slightly higher with increase of load and back pressure at low engine speed condition. However, under high speed conditions, CO reduced significantly with increasing backpressure for all load conditions. The odor level was similar or a little higher with increasing backpressure for all engine speed and load conditions. Hence, backpressure up to a certain level is not detrimental for a CI engine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an experimental study on the vibration signal patterns associated with a simulated piston slap test of a four-cylinder diesel engine. It is found that a simulated worn-off piston results in an increase in vibration RMS peak amplitudes associated with the major mechanical events of the corresponding cylinder (i.e., inlet and exhaust valve closing and combustion of Cylinder 1). This then led to an increase of overall vibration amplitude of the time domain statistical features such as RMS, Crest Factor, Skewness and Kurtosis in all loading conditions. The simulated worn-off piston not only increased the impact amplitude of piston slap during the engine combustion, it also produced a distinct impulse response during the air induction stroke of the cylinder attributing to an increase of lateral impact force as a result of piston reciprocating motion and the increased clearance between the worn-off piston and the cylinder. The unique signal patterns of piston slap disclosed in this paper can be utilized to assist in the development of condition monitoring tools for automated diagnosis of similar diesel engine faults in practical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The feasibility of real-time calculation of parameters for an internal combustion engine via reconfigurable hardware implementation is investigated as an alternative to software computation. A detailed in-hardware field programmable gate array (FPGA)-based design is developed and evaluated using input crank angle and in-cylinder pressure data from fully instrumented diesel engines in the QUT Biofuel Engine Research Facility (BERF). Results indicate the feasibility of employing a hardware-based implementation for real-time processing for speeds comparable to the data sampling rate currently used in the facility, with acceptably low level of discrepancies between hardware and software-based calculation of key engine parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This experimental study examines the effect on performance and emission outputs of a compression ignition engine operating on biodiesels of varying carbon chain length and the degree of unsaturation. A well-instrumented, heavy-duty, multi-cylinder, common-rail, turbo-charged diesel engine was used to ensure that the results contribute in a realistic way to the ongoing debate about the impact of biofuels. Comparative measurements are reported for engine performance as well as the emissions of NOx, particle number and size distribution, and the concentration of the reactive oxygen species (which provide a measure of the toxicity of emitted particles). It is shown that the biodiesels used in this study produce lower mean effective pressure, somewhat proportionally with their lower calorific values; however, the molecular structure has been shown to have little impact on the performance of the engine. The peak in-cylinder pressure is lower for the biodiesels that produce a smaller number of emitted particles, compared to fossil diesel, but the concentration of the reactive oxygen species is significantly higher because of oxygen in the fuels. The differences in the physicochemical properties amongst the biofuels and the fossil diesel significantly affect the engine combustion and emission characteristics. Saturated short chain length fatty acid methyl esters are found to enhance combustion efficiency, reduce NOx and particle number concentration, but results in high levels of fuel consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compression ignition (CI) engine design is subject to many constraints which presents a multi-criteria optimisation problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient, but must also deliver low gaseous, particulate and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming are minimised. Consequently, this study undertakes a multi-criteria analysis which seeks to identify alternative fuels, injection technologies and combustion strategies that could potentially satisfy these CI engine design constraints. Three datasets are analysed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of 1): an ethanol fumigation system, 2): alternative fuels (20 % biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and 3): various biodiesel fuels made from 3 feedstocks (i.e. soy, tallow, and canola) tested at several blend percentages (20-100 %) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20 % by energy) at moderate load, high percentage soy blends (60-100 %), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most “preferred” solutions to this multi-criteria engine design problem. Further research is, however, required to reduce Reactive Oxygen Species (ROS) emissions with alternative fuels, and to deliver technologies that do not significantly reduce the median diameter of particle emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of ethanol fumigation on the inter-cycle variability of key in-cylinder pressure parameters in a modern common rail diesel engine have been investigated. Specifically, maximum rate of pressure rise, peak pressure, peak pressure timing and ignition delay were investigated. A new methodology for investigating the start of combustion was also proposed and demonstrated—which is particularly useful with noisy in-cylinder pressure data as it can have a significant effect on the calculation of an accurate net rate of heat release indicator diagram. Inter-cycle variability has been traditionally investigated using the coefficient of variation. However, deeper insight into engine operation is given by presenting the results as kernel density estimates; hence, allowing investigation of otherwise unnoticed phenomena, including: multi-modal and skewed behaviour. This study has found that operation of a common rail diesel engine with high ethanol substitutions (>20% at full load, >30% at three quarter load) results in a significant reduction in ignition delay. Further, this study also concluded that if the engine is operated with absolute air to fuel ratios (mole basis) less than 80, the inter-cycle variability is substantially increased compared to normal operation.