210 resultados para Physics
Resumo:
Using the generative processes developed over two stages of creative development and the performance of The Physics Project at the Loft at the Creative Industries Precinct at the Queensland University of Technology (QUT) from 5th – 8th April 2006 as a case study, this exegesis considers how the principles of contemporary physics can be reframed as aesthetic principles in the creation of contemporary performance. The Physics Project is an original performance work that melds live performance, video and web-casting and overlaps an exploration of personal identity with the physics of space, time, light and complementarity. It considers the acts of translation between the language of physics and the language of contemporary performance that occur via process and form. This exegesis also examines the devices in contemporary performance making and contemporary performance that extend the reach of the performance, including the integration of the live and the mediated and the use of metanarratives.
Resumo:
This paper explains, somewhat along a Simmelian line, that political theory may produce practical and universal theories like those developed in theoretical physics. The reasoning behind this paper is to show that the Element of Democracy Theory may be true by way of comparing it to Einstein’s Special Relativity – specifically concerning the parameters of symmetry, unification, simplicity, and utility. These parameters are what make a theory in physics as meeting them not only fits with current knowledge, but also produces paths towards testing (application). As the Element of Democracy Theory meets these same parameters, it could settle the debate concerning the definition of democracy. This will be shown firstly by discussing why no one has yet achieved a universal definition of democracy; secondly by explaining the parameters chosen (as in why these and not others confirm or scuttle theories); and thirdly by comparing how Special Relativity and the Element of Democracy match the parameters.
Resumo:
This paper explains, somewhat along a Simmelian line, that political theory may produce practical and universal theories like those developed in theoretical physics. The reasoning behind this paper is to show that the Element of Democracy Theory may be true by way of comparing it to Einstein’s Special Relativity – specifically concerning the parameters of symmetry, unification, simplicity, and utility. These parameters are what make a theory in physics as meeting them not only fits with current knowledge, but also produces paths towards testing (application). As the Element of Democracy Theory meets these same parameters, it could settle the debate concerning the definition of democracy. This will be shown firstly by discussing why no one has yet achieved a universal definition of democracy; secondly by explaining the parameters chosen (as in why these and not others confirm or scuttle theories); and thirdly by comparing how Special Relativity and the Element of Democracy match the parameters.
Resumo:
a presentation about immersive visualised simulation systems, image analysis and GPGPU Techonology
The effects of implementing an innovative assessment program in senior school physics : a case study
Resumo:
This paper argues, somewhat along a Simmelian line, that political theory may produce practical and universal theories like those developed in theoretical physics. The reasoning behind this paper is to show that the theory of ‘basic democracy’ may be true by way of comparing it to Einstein’s Special Relativity – specifically concerning the parameters of symmetry, unification, simplicity, and utility. These parameters are what make a theory in physics as meeting them not only fits with current knowledge, but also produces paths towards testing (application). As the theory of ‘basic democracy’ may meet these same parameters, it could settle the debate concerning the definition of democracy. This will be argued firstly by discussing what the theory of ‘basic democracy’ is and why it differs from previous work; secondly by explaining the parameters chosen (as in why these and not others confirm or scuttle theories); and thirdly by comparing how Special Relativity and the theory of ‘basic democracy’ may match the parameters.
Resumo:
Scientific visualisations such as computer-based animations and simulations are increasingly a feature of high school science instruction. Visualisations are adopted enthusiastically by teachers and embraced by students, and there is good evidence that they are popular and well received. There is limited evidence, however, of how effective they are in enabling students to learn key scientific concepts. This paper reports the results of a quantitative study conducted in Australian physics and chemistry classrooms. In general there was no statistically significant difference between teaching with and without visualisations, however there were intriguing differences around student sex and academic ability.
Resumo:
Enormous amounts of money and energy are being devoted to the development, use and organisation of computer-based scientific visualisations (e.g. animations and simulations) in science education. It seems plausible that visualisations that enable students to gain visual access to scientific phenomena that are too large, too small or occur too quickly or too slowly to be seen by the naked eye, or to scientific concepts and models, would yield enhanced conceptual learning. When the literature is searched, however, it quickly becomes apparent that there is a dearth of quantitative evidence for the effectiveness of scientific visualisations in enhancing students’ learning of science concepts. This paper outlines an Australian project that is using innovative research methodology to gather evidence on this question in physics and chemistry classrooms.
Resumo:
There is extensive uptake of ICT in the teaching of science but more evidence is needed on how ICT impacts on the learning practice and the learning outcomes at the classroom level. In this study, a physics website (Getsmart) was developed using the cognitive apprenticeship framework for students at a high school in Australia. This website was designed to enhance students’ knowledge of concepts in physics. Reflexive pedagogies were used in the delivery learning materials in a blended learning environment. The students in the treatment group accessed the website over a 10 week period. Pre and post-test results of the treatment (N= 48) and comparison group (N=32) were compared. The MANCOVA analysis showed that the web-based learning experience benefited the students in the treatment group. It not only impacted on the learning outcomes, but qualitative data from the students suggested that it had a positive impact on their attitudes towards studying physics in a blended environment.
Resumo:
A quantitative, quasi-experimental study of the effectiveness of computer-based scientific visualizations for concept learning on the part of Year 11 physics students (n=80) was conducted in six Queensland high school classrooms. Students’ gender and academic ability were also considered as factors in relation to the effectiveness of teaching with visualizations. Learning with visualizations was found to be equally effective as learning without them for all students, with no statistically significant difference in outcomes being observed for the group as a whole or on the academic ability dimension. Male students were found to learn significantly better with visualizations than without, while no such effect was observed for female students. This may give rise to some concern for the equity issues raised by introducing visualizations. Given that other research shows that students enjoy learning with visualizations and that their engagement with learning is enhanced, the finding that the learning outcomes are the same as for teaching without visualizations supports teachers’ use of visualizations.
Resumo:
Teachers often have difficulty implementing inquiry-based activities, leading to the arousal of negative emotions. In this multicase study of beginning physics teachers in Australia, we were interested in the extent to which their expectations were realized and how their classroom experiences while implementing extended experimental investigations (EEIs) produced emotional states that mediated their teaching practices. Against rhetoric of fear expressed by their senior colleagues, three of the four teachers were surprised by the positive outcomes from their supervision of EEIs for the first time. Two of these teachers experienced high intensity positive emotions in response to their students’ success. When student actions / outcomes did not meet their teachers’ expectations, frustration, anger, and disappointment were experienced by the teachers, as predicted by a sociological theory of human emotions (Turner, 2007). Over the course of the EEI projects, the teachers’ practices changed along with their emotional states and their students’ achievements. We account for similarities and differences in the teachers’ emotional experiences in terms of context, prior experience, and expectations. The findings from this study provide insights into effective supervision practices that can be used to inform new and experienced teachers alike.
Resumo:
Lending teachers for two-year periods is one of the ways in which Cuba has been able to collaborate with other countries in their efforts to improve educational planning and practice. My field research in 2001 in Jamaica (March and November) and in Namibia (December) enabled me to obtain information about how Cuban teachers are being utilized, and about the educational implications of this project. In Jamaica, I interviewed 15 Cuban teachers in several schools and one in the vocational institute, as well as the Cuban project supervisor in charge of the 51 Cuban teachers. I also talked with officials at the Jamaican Ministry of Education to obtain an idea of the developmental needs in the various subjects that the Cubans had been asked to teach. In Namibia I interviewed personnel in the National Sports Directorate and the Cuban manager in charge of the sports education project. The chapter draws on these interviews to build a picture of how the program of collaboration is organized, and considers its postcolonial significance, in theory and in practice, as an example of South-South collaboration. The chapter contributes to a multilevel style of comparative education analysis based on microlevel qualitative fieldwork within a framework that compares cross-cultural issues and national policies. The discussion of the educational situation of the host countries suggests why Cuban teachers can contribute to meeting curricular needs, particularly in the areas of the sciences, mathematics, Spanish, and sports. The friendly and joking remark of one of the Cuban teachers to school students in Jamaica: “You help me improve my English, I’ll teach you Physics!” highlights the reciprocal potential of these cooperation projects, discussed in several chapters of this book.
Resumo:
The impact-induced deposition of Al13 clusters with icosahedral structure on Ni(0 0 1) surface was studied by molecular dynamics (MD) simulation using Finnis–Sinclair potentials. The incident kinetic energy (Ein) ranged from 0.01 to 30 eV per atom. The structural and dynamical properties of Al clusters on Ni surfaces were found to be strongly dependent on the impact energy. At much lower energy, the Al cluster deposited on the surface as a bulk molecule. However, the original icosahedral structure was transformed to the fcc-like one due to the interaction and the structure mismatch between the Al cluster and Ni surface. With increasing the impinging energy, the cluster was deformed severely when it contacted the substrate, and then broken up due to dense collision cascade. The cluster atoms spread on the surface at last. When the impact energy was higher than 11 eV, the defects, such as Al substitutions and Ni ejections, were observed. The simulation indicated that there exists an optimum energy range, which is suitable for Al epitaxial growth in layer by layer. In addition, at higher impinging energy, the atomic exchange between Al and Ni atoms will be favourable to surface alloying.