68 resultados para PRINCIPAL COMPONENTS-ANALYSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this article is to gain an insight into the relationships between variables describing the environmental conditions of the Far Northern section of the Great Barrier Reef, Australia. Several of the variables describing these conditions had different measurement levels and often they had non-linear relationships. Using non-linear principal component analysis, it was possible to acquire an insight into these relationships. Furthermore, three geographical areas with unique environmental characteristics could be identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People’s beliefs about where society has come from and where it is going have personal and political consequences. Here, we conduct a detailed investigation of these beliefs through re-analyzing Kashima et al.’s (Study 2, n = 320) data from China, Australia, and Japan. Kashima et al. identified a “folk theory of social change” (FTSC) belief that people in society become more competent over time, but less warm and moral. Using three-mode principal components analysis, an under-utilized analytical method in psychology, we identified two additional narratives: Utopianism/Dystopianism (people becoming generally better or worse over time) and Expansion/Contraction (an increase/decrease in both positive and negative aspects of character over time). Countries differed in endorsement of these three narratives of societal change. Chinese endorsed the FTSC and Utopian narratives more than other countries, Japanese held Dystopian and Contraction beliefs more than other countries, and Australians’ narratives of societal change fell between Chinese and Japanese. Those who believed in greater economic/technological development held stronger FTSC and Expansion/Contraction narratives, but not Utopianism/Dystopianism. By identifying multiple cultural narratives about societal change, this research provides insights into how people across cultures perceive their social world and their visions of the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To explore the characteristics of regional distribution of cancer deaths in Shandong Province with the principle components analysis. Methods The principle components analysis with co-variance matrix for age-adjusted mortality rates and percentages of 20 types of cancer in 22 counties (cities) were carried out using SAS Software. Results Over 90% of the total information could be reflected by the top 3 principle components and the first principle component alone represented more than half of the overall regional variances. The first component mainly reflected the area differences of esophageal cancer. The second component mainly reflected the area differences of lung cancer, stomach cancer and liver cancer. The value of the first principal component scores showed a clear trend that the west areas possessed higher values and the east the lower values. Based on the top two components,the 22 counties (cities) could be divided into several geographical clusters. Conclusion The overall difference of regional distribution of cancers in Shandong is dominated by several major cancers including esophageal cancer, lung cancer, stomach cancer and liver cancer. Among them,esophageal cancer makes the largest contribution. If the range of counties (cities) analyzed could be further widened, the characteristics of regional distribution of cancer mortality would be better examined. Abstract in Chinese 目的 利用主成分分析探讨山东省恶性肿瘤死亡的地区分布特征. 方法 利用SAS软件对山东省22个县市区2004~2006午的20种恶性肿瘤标化死亡率和构成比分别进行协方差矩阵主成分分析. 结果 前3个主成分就反映了总体差异90%以上的信息,其中仅第1主成分就提供了总体差异一半以上的信息.第1主成分主要反映了食管癌的地区差异,第2主成分主要反映肺癌的地区差异,兼顾胃癌和肝癌.各地区第1主成分得分呈现西高东低的趋势,根据第1和第2主成分可以将调查地区分为若干类别,表现为明显的地理聚集性. 结论 山东省各地区恶性肿瘤死亡的总体差异主要取决于少数高发肿瘤,包括食管癌、肺癌、胃癌、肝癌等,其中以食管癌地位最为突出.如能进一步扩大分析范围,可更好地查明恶性肿瘤死亡的地区特征.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromatographic fingerprints of 46 Eucommia Bark samples were obtained by liquid chromatography-diode array detector (LC-DAD). These samples were collected from eight provinces in China, with different geographical locations, and climates. Seven common LC peaks that could be used for fingerprinting this common popular traditional Chinese medicine were found, and six were identified as substituted resinols (4 compounds), geniposidic acid and chlorogenic acid by LC-MS. Principal components analysis (PCA) indicated that samples from the Sichuan, Hubei, Shanxi and Anhui—the SHSA provinces, clustered together. The other objects from the four provinces, Guizhou, Jiangxi, Gansu and Henan, were discriminated and widely scattered on the biplot in four province clusters. The SHSA provinces are geographically close together while the others are spread out. Thus, such results suggested that the composition of the Eucommia Bark samples was dependent on their geographic location and environment. In general, the basis for discrimination on the PCA biplot from the original 46 objects× 7 variables data matrix was the same as that for the SHSA subset (36 × 7 matrix). The seven marker compound loading vectors grouped into three sets: (1) three closely correlating substituted resinol compounds and chlorogenic acid; (2) the fourth resinol compound identified by the OCH3 substituent in the R4 position, and an unknown compound; and (3) the geniposidic acid, which was independent of the set 1 variables, and which negatively correlated with the set 2 ones above. These observations from the PCA biplot were supported by hierarchical cluster analysis, and indicated that Eucommia Bark preparations may be successfully compared with the use of the HPLC responses from the seven marker compounds and chemometric methods such as PCA and the complementary hierarchical cluster analysis (HCA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This overview focuses on the application of chemometrics techniques for the investigation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs) and metals because these two important and very diverse groups of pollutants are ubiquitous in soils. The salient features of various studies carried out in the micro- and recreational environments of humans, are highlighted in the context of the various multivariate statistical techniques available across discipline boundaries that have been effectively used in soil studies. Particular attention is paid to techniques employed in the geosciences that may be effectively utilized for environmental soil studies; classical multivariate approaches that may be used in isolation or as complementary methods to these are also discussed. Chemometrics techniques widely applied in atmospheric studies for identifying sources of pollutants or for determining the importance of contaminant source contributions to a particular site, have seen little use in soil studies, but may be effectively employed in such investigations. Suitable programs are also available for suggesting mitigating measures in cases of soil contamination, and these are also considered. Specific techniques reviewed include pattern recognition techniques such as Principal Components Analysis (PCA), Fuzzy Clustering (FC) and Cluster Analysis (CA); geostatistical tools include variograms, Geographical Information Systems (GIS), contour mapping and kriging; source identification and contribution estimation methods reviewed include Positive Matrix Factorisation (PMF), and Principal Component Analysis on Absolute Principal Component Scores (PCA/APCS). Mitigating measures to limit or eliminate pollutant sources may be suggested through the use of ranking analysis and multi criteria decision making methods (MCDM). These methods are mainly represented in this review by studies employing the Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and its associated graphic output, Geometrical Analysis for Interactive Aid (GAIA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra-performance LC coupled to quadrupole TOF/MS (UPLC-QTOF/MS) in positive and negative ESI was developed and validated to analyze metabolite profiles for urine from healthy men during the day and at night. Data analysis using principal components analysis (PCA) revealed differences between metabolic phenotypes of urine in healthy men during the day and at night. Positive ions with mass-to-charge ratio (m/z) 310.24 (5.35 min), 286.24 (4.74 min) and 310.24 (5.63 min) were elevated in the urine from healthy men at night compared to that during the day. Negative ions elevated in day urine samples of healthy men included m/z 167.02 (0.66 min), 263.12 (2.55 min) and 191.03 (0.73 min), whilst ions m/z 212.01 (4.77 min) were at a lower concentration in urine of healthy men during the day compared to that at night. The ions m/z 212.01 (4.77 min), 191.03 (0.73 min) and 310.24 (5.35 min) preliminarily correspond to indoxyl sulfate, citric acid and N-acetylneuraminic acid, providing further support for an involvement of phenotypic difference in urine of healthy men in day and night samples, which may be associated with notably different activities of gut microbiota, velocity of tricarboxylic acid cycle and activity of sialic acid biosynthesis in healthy men as regulated by circadian rhythm of the mammalian bioclock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is debated that for sustainable STEM education and knowledge investment, human centered learning design approach is critical and important. Sustainability in this context is enduring maintenance of technological trajectories for productive economical and social interactions by demonstrating life critical scenarios through life critical system development and life experiences. Technology influences way of life and the learning and teaching process. Social software application development is more than learning of how to program a software application and extracting information from the Internet. Hence, our research challenge is, how do we attract learners to STEM social software application development? Our realisation processes begin with comparing Science and Technology education in developed (e.g., Australia) and developing (e.g., Sri Lanka) countries with distinction on final year undergraduates’ industry ready training programmes. Principal components analysis was performed to separate patterns of important factors. To measure behavioural intention of perceived usefulness and attitudes of the training, the measurement model was analysed to test its validity and reliability using partial least square (PLS) analysis of structural equation modelling (SEM). Our observation is that the relationship is more complex than we argue for. Our initial conclusions were that life critical system development and life experience trajectories as determinant factors while technological influences were unavoidable. A further investigation should involve correlations between human centered learning design approach and economical development in the long run.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For users of germplasm collections, the purpose of measuring characterization and evaluation descriptors, and subsequently using statistical methodology to summarize the data, is not only to interpret the relationships between the descriptors, but also to characterize the differences and similarities between accessions in relation to their phenotypic variability for each of the measured descriptors. The set of descriptors for the accessions of most germplasm collections consists of both numerical and categorical descriptors. This poses problems for a combined analysis of all descriptors because few statistical techniques deal with mixtures of measurement types. In this article, nonlinear principal component analysis was used to analyze the descriptors of the accessions in the Australian groundnut collection. It was demonstrated that the nonlinear variant of ordinary principal component analysis is an appropriate analytical tool because subspecies and botanical varieties could be identified on the basis of the analysis and characterized in terms of all descriptors. Moreover, outlying accessions could be easily spotted and their characteristics established. The statistical results and their interpretations provide users with a more efficient way to identify accessions of potential relevance for their plant improvement programs and encourage and improve the usefulness and utilization of germplasm collections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twin studies are a major research direction in imaging genetics, a new field, which combines algorithms from quantitative genetics and neuroimaging to assess genetic effects on the brain. In twin imaging studies, it is common to estimate the intraclass correlation (ICC), which measures the resemblance between twin pairs for a given phenotype. In this paper, we extend the commonly used Pearson correlation to a more appropriate definition, which uses restricted maximum likelihood methods (REML). We computed proportion of phenotypic variance due to additive (A) genetic factors, common (C) and unique (E) environmental factors using a new definition of the variance components in the diffusion tensor-valued signals. We applied our analysis to a dataset of Diffusion Tensor Images (DTI) from 25 identical and 25 fraternal twin pairs. Differences between the REML and Pearson estimators were plotted for different sample sizes, showing that the REML approach avoids severe biases when samples are smaller. Measures of genetic effects were computed for scalar and multivariate diffusion tensor derived measures including the geodesic anisotropy (tGA) and the full diffusion tensors (DT), revealing voxel-wise genetic contributions to brain fiber microstructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some statistical procedures already available in literature are employed in developing the water quality index, WQI. The nature of complexity and interdependency that occur in physical and chemical processes of water could be easier explained if statistical approaches were applied to water quality indexing. The most popular statistical method used in developing WQI is the principal component analysis (PCA). In literature, the WQI development based on the classical PCA mostly used water quality data that have been transformed and normalized. Outliers may be considered in or eliminated from the analysis. However, the classical mean and sample covariance matrix used in classical PCA methodology is not reliable if the outliers exist in the data. Since the presence of outliers may affect the computation of the principal component, robust principal component analysis, RPCA should be used. Focusing in Langat River, the RPCA-WQI was introduced for the first time in this study to re-calculate the DOE-WQI. Results show that the RPCA-WQI is capable to capture similar distribution in the existing DOE-WQI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE The aim of this research project was to obtain an understanding of the barriers to and facilitators of providing palliative care in neonatal nursing. This article reports the first phase of this research: to develop and administer an instrument to measure the attitudes of neonatal nurses to palliative care. METHODS The instrument developed for this research (the Neonatal Palliative Care Attitude Scale) underwent face and content validity testing with an expert panel and was pilot tested to establish temporal stability. It was then administered to a population sample of 1285 neonatal nurses in Australian NICUs, with a response rate of 50% (N 645). Exploratory factor-analysis techniques were conducted to identify scales and subscales of the instrument. RESULTS Data-reduction techniques using principal components analysis were used. Using the criteria of eigenvalues being 1, the items in the Neonatal Palliative Care Attitude Scale extracted 6 factors, which accounted for 48.1% of the variance among the items. By further examining the questions within each factor and the Cronbach’s of items loading on each factor, factors were accepted or rejected. This resulted in acceptance of 3 factors indicating the barriers to and facilitators of palliative care practice. The constructs represented by these factors indicated barriers to and facilitators of palliative care practice relating to (1) the organization in which the nurse practices, (2) the available resources to support a palliative model of care, and (3) the technological imperatives and parental demands. CONCLUSIONS The subscales identified by this analysis identified items that measured both barriers to and facilitators of palliative care practice in neonatal nursing. While establishing preliminary reliability of the instrument by using exploratory factor-analysis techniques, further testing of this instrument with different samples of neonatal nurses is necessary using a confirmatory factor-analysis approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is unclear which theoretical dimension of psychological stress affects health status. We hypothesized that both distress and coping mediate the relationship between socio-economic position and tooth loss. Cross-sectional data from 2915 middle-aged adults evaluated retention of < 20 teeth, behaviors, psychological stress, and sociodemographic characteristics. Principal components analysis of the Perceived Stress Scale (PSS) extracted 'distress' (a = 0.85) and 'coping' (a =0.83) factors, consistent with theory. Hierarchical entry of explanatory variables into age- and sex-adjusted logistic regression models estimated odds ratios (OR) and 95% confidence intervals [95% CI] for retention of < 20 teeth. Analysis of the separate contributions of distress and coping revealed a significant main effect of coping (OR = 0.7 [95% CI = 0.7-0.8]), but no effect for distress (OR = 1.0 [95% CI = 0.9-1.1]) or for the interaction of coping and distress. Behavior and psychological stress only modestly attenuated socio-economic inequality in retention of < 20 teeth, providing evidence to support a mediating role of coping.