177 resultados para POSITIVE-IONS
Resumo:
This paper is a modified version of a lecture which describes the synthesis, structure and reactivity of some neutral molecules of stellar significance. The neutrals are formed in the collision cell of a mass spectrometer following vertical Franck-Condon one electron oxidation of anions of known bond connectivity. Neutrals are characterised by conversion to positive ions and by extensive theoretical studies at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory. Four systems are considered in detail, viz (i) the formation of linear C-4 and its conversion to the rhombus C-4, (ii) linear C-5 and the atom scrambling of this system when energised, (iii) the stable cumulene oxide CCCCCO, and (iv) the elusive species O2C-CO. This paper is not intended to be a review of interstellar chemistry: examples are selected from our own work in this area. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
We show that the cluster ion concentration (CIC) in the atmosphere is significantly suppressed during events that involve rapid increases in particle number concentration (PNC). Using a neutral cluster and air ion spectrometer, we investigated changes in CIC during three types of particle enhancement processes – new particle formation, a bushfire episode and an intense pyrotechnic display. In all three cases, the total CIC decreased with increasing PNC, with the rate of decrease being greater for negative CIC than positive. We attribute this to the greater mobility, and hence the higher attachment coefficient, of negative ions over positive ions in the air. During the pyrotechnic display, the rapid increase in PNC was sufficient to reduce the CIC of both polarities to zero. At the height of the display, the negative CIC stayed at zero for a full 10 min. Although the PNCs were not significantly different, the CIC during new particle formation did not decrease as much as during the bushfire episode and the pyrotechnic display. We suggest that the rate of increase of PNC, together with particle size, also play important roles in suppressing CIC in the atmosphere.
Resumo:
This paper was designed to study metabonomic characters of the hepatotoxicity induced by alcohol and the intervention effects of Yin Chen Hao Tang (YCHT), a classic traditional Chinese medicine formula for treatment of jaundice and liver disorders in China. Urinary samples from control, alcohol- and YCHT-treated rats were analyzed by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) in positive ionization mode. The total ion chromatograms obtained from the control, alcohol- and YCHT-treated rats were easily distinguishable using a multivariate statistical analysis method such as the principal components analysis (PCA). The greatest difference in metabolic profiling was observed from alcohol-treated rats compared with the control and YCHT-treated rats. The positive ions m/z 664.3126 (9.00 min) was elevated in urine of alcohol-treated rats, whereas, ions m/z 155.3547 (10.96 min) and 708.2932 (9.01 min) were at a lower concentration compared with that in urine of control rats, however, these ions did not indicate a statistical difference between control rats and YCHT-treated rats. The ion m/z 664.3126 was found to correspond to ceramide (d18:1/25:0), providing further support for an involvement of the sphingomyelin signaling pathway in alcohol hepatotoxicity and the intervention effects of YCHT.
Resumo:
Ultra-performance LC coupled to quadrupole TOF/MS (UPLC-QTOF/MS) in positive and negative ESI was developed and validated to analyze metabolite profiles for urine from healthy men during the day and at night. Data analysis using principal components analysis (PCA) revealed differences between metabolic phenotypes of urine in healthy men during the day and at night. Positive ions with mass-to-charge ratio (m/z) 310.24 (5.35 min), 286.24 (4.74 min) and 310.24 (5.63 min) were elevated in the urine from healthy men at night compared to that during the day. Negative ions elevated in day urine samples of healthy men included m/z 167.02 (0.66 min), 263.12 (2.55 min) and 191.03 (0.73 min), whilst ions m/z 212.01 (4.77 min) were at a lower concentration in urine of healthy men during the day compared to that at night. The ions m/z 212.01 (4.77 min), 191.03 (0.73 min) and 310.24 (5.35 min) preliminarily correspond to indoxyl sulfate, citric acid and N-acetylneuraminic acid, providing further support for an involvement of phenotypic difference in urine of healthy men in day and night samples, which may be associated with notably different activities of gut microbiota, velocity of tricarboxylic acid cycle and activity of sialic acid biosynthesis in healthy men as regulated by circadian rhythm of the mammalian bioclock.
Resumo:
The charge of an isolated dust grain and ion drag forces on the grain in a collisionless, high-voltage, capacitive rf sheath are studied theoretically. The studies are carried out assuming that the positive ions are monoenergetic, as well as in more realistic approximation, assuming that the time-averaged energy distribution of ions impinging on the dust grain has a double-peaked hollow profile. For the nonmonoenergetic case, an analytical expression for the ion flux to the dust grain is obtained. It is studied how the dust charge and ion drag forces depend on the rf frequency, electron density at plasma-sheath boundary, electron temperature and ratio of the effective oscillation amplitude of rf current to the electron Debye length. It is shown that the dust charge and ion drag forces obtained in the monoenergetic ion approximation may differ from those calculated assuming that the ions are nonmonoenergetic. The difference increases with increasing the width of the ion energy spread in the ion distribution. © 2009 American Institute of Physics.
Resumo:
Corona discharge is responsible for the flux of small ions from overhead power lines, and is capable of modifying the ambient electrical environment, such as the air ion concentrations at ground level. Once produced, small ions quickly attach to aerosol particles in the air, producing ‘large ions’, approximately 1 nm to 1 µm in diameter. However, very few studies have measured air ion concentrations directly near high voltage transmission lines. The present study involved the simultaneously measurement of small ion concentration and net large ion concentration using air ion counters and an aerosol electrometer at four power line sites. Both positive and negative small ion concentration (<1.6nm), net large ion concentration (2nm-5μm) and particle number concentration (10nm-2μm) were measured using air ion counters and an aerosol electrometer at four power line sites. Measurements at sites 1 and 2 were conducted at both upwind and downwind sides. The results showed that total ion concentrations on the downwind side were 3-5 times higher than on the upwind side, while particle number concentrations did not show a significant difference. This result also shows that a large number of ions were emitted from the power lines at sites 1 and 2. Furthermore, both positive and negative ions were observed at different power line sites. Dominant positive ions were observed at site 1, with a concentration of 4.4 x 103 ions cm-3, which was 10 times higher than on the upwind side. Contrary to site 1, sites 2 to 4 showed negative ion emissions, with concentrations of -1.2 x 103, -460 and -410 ions cm-3, respectively. These values were higher than the background urban negative ion concentration of 400 cm-3. At site 1 and site 2, the net ion concentration and net particle charge concentration on downwind side of the lines showed same polarities. Further investigations were also conducted into the correlation between net ion concentration and net charge particle concentration 20 m downwind of the power lines at site 2. The two parameters showed a correlation coefficient of 0.72, indicating that a substantial number of ions could attach to particles and affect the particle charge status within a short distance from the source.
Resumo:
Non-thermal plasma (NTP) is a promising candidate for controlling engine exhaust emissions. Plasma is known as the fourth state of matter, where both electrons and positive ions co-exist. Both gaseous and particle emissions of diesel exhaust undergo chemical changes when they are exposed to plasma. In this project diesel particulate matter (DPM) mitigation from the actual diesel exhaust by using NTP technology has been studied. The effect of plasma, not only on PM mass but also on PM size distribution, physico-chemical structure of PM and PM removal mechanisms, has been investigated. It was found that NTP technology can significantly reduce both PM mass and number. However, under some circumstances particles can be formed by nucleation. Energy required to create the plasma with the current technology is higher than the benchmark set by the commonly used by the automotive industry. Further research will enable the mechanism of particle creation and energy consumption to be optimised.
Resumo:
Along with their essential role in electricity transmission and distribution, some powerlines also generate large concentrations of corona ions. This study aimed at comprehensive investigation of corona ions, vertical dc e-field, ambient aerosol particle charge and particle number concentration levels in the proximity of some high/sub-transmission voltage powerlines. The influence of meteorology on the instantaneous value of these parameters, and the possible existence of links or associations between the parameters measured were also statistically investigated. The presence of positive and negative polarities of corona ions was associated with variation in the mean vertical dc e-field, ambient ion and particle charge concentration level. Though these variations increased with wind speed, their values also decreased with distance from the powerlines. Predominately positive polarities of ions were recorded up to a distance of 150 m (with the maximum values recorded 50 m downwind of the powerlines). At 200 m from the source, negative ions predominated. Particle number concentration levels however remained relatively constant (103 particle cm-3) irrespective of the sampling site and distance from the powerlines. Meteorological factors of temperature, humidity and wind direction showed no influence on the electrical parameters measured. The study also discovered that e-field measurements were not necessarily a true representation of the ground-level ambient ion/particle charge concentrations.
Resumo:
Measurements in the exhaust plume of a petrol-driven motor car showed that molecular cluster ions of both signs were present in approximately equal amounts. The emission rate increased sharply with engine speed while the charge symmetry remained unchanged. Measurements at the kerbside of nine motorways and five city roads showed that the mean total cluster ion concentration near city roads (603 cm-3) was about one-half of that near motorways (1211 cm-3) and about twice as high as that in the urban background (269 cm-3). Both positive and negative ion concentrations near a motorway showed a significant linear increase with traffic density (R2=0.3 at p<0.05) and correlated well with each other in real time (R2=0.87 at p<0.01). Heavy duty diesel vehicles comprised the main source of ions near busy roads. Measurements were conducted as a function of downwind distance from two motorways carrying around 120-150 vehicles per minute. Total traffic-related cluster ion concentrations decreased rapidly with distance, falling by one-half from the closest approach of 2m to 5m of the kerb. Measured concentrations decreased to background at about 15m from the kerb when the wind speed was 1.3 m s-1, this distance being greater at higher wind speed. The number and net charge concentrations of aerosol particles were also measured. Unlike particles that were carried downwind to distances of a few hundred metres, cluster ions emitted by motor vehicles were not present at more than a few tens of metres from the road.
Resumo:
In recent years, the effect of ions and ultrafine particles on ambient air quality and human health has been well documented, however, knowledge about their sources, concentrations and interactions within different types of urban environments remains limited. This thesis presents the results of numerous field studies aimed at quantifying variations in ion concentration with distance from the source, as well as identifying the dynamics of the particle ionisation processes which lead to the formation of charged particles in the air. In order to select the most appropriate measurement instruments and locations for the studies, a literature review was also conducted on studies that reported ion and ultrafine particle emissions from different sources in a typical urban environment. The initial study involved laboratory experiments on the attachment of ions to aerosols, so as to gain a better understanding of the interaction between ions and particles. This study determined the efficiency of corona ions at charging and removing particles from the air, as a function of different particle number and ion concentrations. The results showed that particle number loss was directly proportional to particle charge concentration, and that higher small ion concentrations led to higher particle deposition rates in all size ranges investigated. Nanoparticles were also observed to decrease with increasing particle charge concentration, due to their higher Brownian mobility and subsequent attachment to charged particles. Given that corona discharge from high voltage powerlines is considered one of the major ion sources in urban areas, a detailed study was then conducted under three parallel overhead powerlines, with a steady wind blowing in a perpendicular direction to the lines. The results showed that large sections of the lines did not produce any corona at all, while strong positive emissions were observed from discrete components such as a particular set of spacers on one of the lines. Measurements were also conducted at eight upwind and downwind points perpendicular to the powerlines, spanning a total distance of about 160m. The maximum positive small and large ion concentrations, and DC electric field were observed at a point 20 m downwind from the lines, with median values of 4.4×103 cm-3, 1.3×103 cm-3 and 530 V m-1, respectively. It was estimated that, at this point, less than 7% of the total number of particles was charged. The electrical parameters decreased steadily with increasing downwind distance from the lines but remained significantly higher than background levels at the limit of the measurements. Moreover, vehicles are one of the most prevalent ion and particle emitting sources in urban environments, and therefore, experiments were also conducted behind a motor vehicle exhaust pipe and near busy motorways, with the aim of quantifying small ion and particle charge concentration, as well as their distribution as a function of distance from the source. The study found that approximately equal numbers of positive and negative ions were observed in the vehicle exhaust plume, as well as near motorways, of which heavy duty vehicles were believed to be the main contributor. In addition, cluster ion concentration was observed to decrease rapidly within the first 10-15 m from the road and ion-ion recombination and ion-aerosol attachment were the most likely cause of ion depletion, rather than dilution and turbulence related processes. In addition to the above-mentioned dominant ion sources, other sources also exist within urban environments where intensive human activities take place. In this part of the study, airborne concentrations of small ions, particles and net particle charge were measured at 32 different outdoor sites in and around Brisbane, Australia, which were classified into seven different groups as follows: park, woodland, city centre, residential, freeway, powerlines and power substation. Whilst the study confirmed that powerlines, power substations and freeways were the main ion sources in an urban environment, it also suggested that not all powerlines emitted ions, only those with discrete corona discharge points. In addition to the main ion sources, higher ion concentrations were also observed environments affected by vehicle traffic and human activities, such as the city centre and residential areas. A considerable number of ions were also observed in a woodland area and it is still unclear if they were emitted directly from the trees, or if they originated from some other local source. Overall, it was found that different types of environments had different types of ion sources, which could be classified as unipolar or bipolar particle sources, as well as ion sources that co-exist with particle sources. In general, fewer small ions were observed at sites with co-existing sources, however particle charge was often higher due to the effect of ion-particle attachment. In summary, this study quantified ion concentrations in typical urban environments, identified major charge sources in urban areas, and determined the spatial dispersion of ions as a function of distance from the source, as well as their controlling factors. The study also presented ion-aerosol attachment efficiencies under high ion concentration conditions, both in the laboratory and in real outdoor environments. The outcomes of these studies addressed the aims of this work and advanced understanding of the charge status of aerosols in the urban environment.
Resumo:
Positive and negative small ions, aerosol ion and number concentration and dc electric fields were monitored at an overhead high-voltage power line site. We show that the emission of corona ions was not spatially uniform along the lines and occurred from discrete components such as a particular set of spacers. Maximum ion concentrations and atmospheric dc electric fields were observed at a point 20 m downwind of the lines. It was estimated that less than 7% of the total number of aerosol particles was charged. The electrical parameters decreased steadily with further downwind distance but remained significantly higher than background.
Resumo:
Positive and negative ion electrospray ionization (ESI) mass spectra of complexes of positively charged small molecules (distamycin, Hoechst 33258, [Ru(phen)2dpq]Cl2 and [Ru(phen)2dpqC]Cl2) have been compared. [Ru(phen)2dpq]Cl2 and [Ru(phen)2dpqC]Cl2 bind to DNA by intercalation. Negative ion ESI mass spectra of mixtures of [Ru(phen)2dpq]Cl2 or [Ru(phen)2dpqC]Cl2 with DNA showed ions from DNA-ligand complexes consistent with solution studies. In contrast, only ions from freeDNAwere present in positive ion ESI mass spectra of mixtures of [Ru(phen)2dpq]Cl2 or [Ru(phen)2dpqC]Cl2 with DNA, highlighting the need for obtaining ESI mass spectra of non-covalent complexes under a range of experimental conditions. Negative ion spectra of mixtures of the minor groove binder Hoechst 33258 with DNA containing a known minor groove binding sequence were dominated by ions from a 1:1 complex. In contrast, in positive ion spectra there were also ions present from a 2:1 (Hoechst 33258: DNA) complex, suggesting an alternative binding mode was possible either in solution or in the gas phase. When Hoechst 33258 was mixed with a DNA sequence lacking a high affinity minor groove binding site, the negative ion ESI mass spectra showed that 1:1 and 2:1 complexes were formed, consistent with existence of binding modes other than minor groove binding. The data presented suggest that comparison of positive and negative ion ESI-MS spectra might provide an insight into various binding modes in both solution and the gas phase.
Resumo:
Ions play an important role in affecting climate and particle formation in the atmosphere. Small ions rapidly attach to particles in the air and, therefore, studies have shown that they are suppressed in polluted environments. Urban environments, in particular, are dominated by motor vehicle emissions and, since motor vehicles are a source of both particles and small ions, the relationship between these two parameters is not well known. In order to gain a better understanding of this relationship, an intensive campaign was undertaken where particles and small ions of both signs were monitored over two week periods at each of three sites A, B and C that were affected to varying degrees by vehicle emissions. Site A was close to a major road and reported the highest particle number and lowest small ion concentrations. Precursors from motor vehicle emissions gave rise to clear particle formation events on five days and, on each day this was accompanied by a suppression of small ions. Observations at Site B, which was located within the urban airshed, though not adjacent to motor traffic, showed particle enhancement but no formation events. Site C was a clean site, away from urban sources. This site reported the lowest particle number and highest small ion concentration. The positive small ion concentration was 10% to 40% higher than the corresponding negative value at all sites. These results confirm previous findings that there is a clear inverse relationship between small ions and particles in urban environments dominated by motor vehicle emissions.
Resumo:
Fatty acids are long-chain carboxylic acids that readily produce \[M - H](-) ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely \[M - 2H + (FeCl)-Cl-II](-). In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., \[M - 2H + Na](-)). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an \[M - H + NaF](-) ion. Subsequent collision-induced dissociation (CID) results in the desired \[M - 2H + Na](-) ion via the neutral loss of HF. (2) Direct formation of the \[M - 2H + Na](-) ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of \[M - 2H + Na](-) ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), is the lowest energy dissociation pathway.