173 resultados para Ohio and Pennsylvania Rail-Road Company.
Resumo:
In urban environments road traffic volumes are increasing and the density of living is becoming higher. As a consequence the urban community is being exposed to increasing levels of road traffic noise. It is also evident that the noise reduction potential of within-the-road-reserve treatments such as noise barriers, mounding and pavement surfacing has been exhausted. This paper presents a strategy that involves the comparison of noise ameliorative treatments both within and outside the road reserve. The noise reduction resulting from the within-the-road-reserve component of treatments has been evaluated using a leading application of the CoRTN Model, developed by the UK Department of Transport 1988 [1], and the outside road reserve treatment has been evaluated in accordance with the Australian Standard 3671, Acoustics – Road traffic noise intrusion – Building sitting and construction [5]. The evaluation of noise treatments has been undertaken using a decision support tool (DST) currently being developed under the research program conducted at RMIT University and Department of Main Roads, Queensland. The case study has been based on data from a real project in Queensland, Australia. The research described here was carried out by the Australian Cooperative Research Centre for Construction Innovation [9], in collaboration with Department of Main Roads, Queensland, Department of Public Works, Queensland, Arup Pty. Ltd., Queensland University of technology and RMIT University.
Resumo:
Young novice drivers are at considerable risk of injury and fatality, particularly when they first drive independently. Graduated Driver Licensing (GDL) has been introduced in numerous jurisdictions to allow more driving experience in conditions of reduced risk and increasing driving privileges over a longer duration. Queensland, Australia, enhanced GDL July 2007. Learners must record 100 hours in a logbook (10 hours at night) over 1 year, no mobile handsfree/loudspeaker by driver or any passenger. Provisional 1 (P1) drivers must not carry 2 or more peer passengers 11pm - 5am, no mobile handsfree/loudspeaker by any passenger. Self-reported compliance with new GDL and general road rules has not been examined.
Resumo:
The graduated driver licensing (GDL) program in Queensland, Australia, was considerably enhanced in July 2007. This paper explores the compliance of young Learner and Provisional (intermediate) drivers with current GDL requirements and general road rules. Unsupervised driving, Learner logbook accuracy, and experiences of punishment avoidance were explored, along with speeding as a Provisional driver. Participants (609 females; M = 17.43 years) self-reported sociodemographic characteristics, driving behaviours and licensing experiences as Learners. A subset of participants (238 females, 105 males) completed another survey six months later exploring their Provisional behaviours and experiences. While the majority of the participants reported compliance with both the GDL requirements and general road rules such as stopping at red lights on their Learner licence; a considerable proportion reported speeding. Furthermore, they reported becoming less compliant during the Provisional phase, particularly with speed limits. Self-reported speeding was predicted by younger age at licensure, being in a relationship, driving unsupervised, submitting inaccurate Learner logbooks, and speeding as a Learner. Enforcement and education countermeasures should focus upon curtailing noncompliance, targeting speeding in particular. Novice drivers should be encouraged to comply with all road rules, including speed limits, and safe driving behaviours should be developed and reinforced during the Learner and early Provisional periods. Novice drivers have been found to model their parents’ driving, and parents are pivotal in regulating novice driving. It is vital young novice drivers and parents alike are encouraged to comply with all road rules, including GDL requirements.
Resumo:
Urban road dust comprises of a range of potentially toxic metal elements and plays a critical role in degrading urban receiving water quality. Hence, assessing the metal composition and concentration in urban road dust is a high priority. This study investigated the variability of metal composition and concentrations in road dust in 4 different urban land uses in Gold Coast, Australia. Samples from 16 road sites were collected and tested for selected 12 metal species. The data set was analyzed using both univariate and multivariate techniques. Outcomes of the data analysis revealed that the metal concentrations in road dust differ considerably within and between different land uses. Iron, aluminum, magnesium and zinc are the most abundant in urban land uses. It was also noted that metal species such as titanium, nickel, copper and zinc have the highest concentrations in industrial land use. The study outcomes revealed that soil and traffic related sources as key sources of metals deposited on road surfaces.
Resumo:
Newly licenced drivers are disproportionately represented in traffic injuries and crash statistics. Despite the implementation of countermeasures designed to improve safety, such as graduated driver licencing (GDL) schemes, many young drivers do not comply with road rules. This study used a reconceptualised deterrence theory framework to investigate young drivers’ perceptions of the enforcement of road rules in general and those more specifically related to GDL. A total of 236 drivers aged 17–24 completed a questionnaire assessing their perceptions of various deterrence mechanisms (personal and vicarious) and their compliance with both GDL-specific and general road rules. Hierarchical multiple regressions conducted to explore noncompliant behaviour revealed that, contrary to theoretical expectations, neither personal nor vicarious punishment experiences affected compliance in the expected direction. Instead, the most influential factors contributing to noncompliance were licence type (P2) and, counterintuitively, having previously been exposed to enforcement. Parental enforcement was also significant in the prediction of transient rule violations, but not fixed rule violations or overall noncompliance. Findings are discussed in light of several possibilities, including an increase in violations due to more time spent on the road, an ‘emboldening effect’ noted in prior studies and possible conceptual constraints regarding the deterrence variables examined in this study.
Resumo:
Objectives Studies from different parts of the world have indicated that the impact of road traffic incidents disproportionally affects young adults. Few known studies have been forthcoming from Arabian Gulf countries. Within Oman, a high proportion of the population is under the age of 20. Coupled with the drastic increase of motorization in recent years there is a need to understand the state of road safety among young people in Oman. The current research aimed to explore the prevalence and characteristics of road traffic injuries among young drivers aged 17-25 years. Methods Crash data from 2009-2011 was extracted from the Directorate General of Traffic, Royal Oman Police (ROP) database in Oman. The data was analyzed to explore the impact of road crashes on young people (17-25 years), the characteristics of young driver crashes and how these differ from older drivers and to identify key predictors of fatalities in young driver crashes. Results Overall, young people were over-represented in injuries and fatalities within the sample time period. While it is true that many young people in crashes were driving at the time, it was also evident that young people were often a victim in a crash caused by someone else. Thus, to reduce the impact of road crashes on young people, there is a need to generally address road safety within Oman. When young drivers were involved in crashes they were predominantly male. The types of crashes these drivers have can be broadly attributed to risk taking and inexperience. Speeding and night time driving were the key risk factors for fatalities. Conclusion The results highlight the need to address young driver safety in Oman. From these findings, the introduction of a graduated driver licensing system with night time driving restrictions could significantly improve young driver safety.
Pedestrian self-reported exposure to distraction by smart phones while walking and crossing the road
Resumo:
Pedestrian crashes account for approximately 14% of road fatalities in Australia. Crossing the road, while a minor part of total walking, presents the highest crash risk because of potential interaction with motor vehicles. Crash risk is elevated by pedestrian illegal use of the road, which may be widespread (e.g. 20% of crossings at signalised intersections at a sample of sites, Brisbane) and enforcement is rare. Effective road crossing requires integration of multiple skills and judgements, any of which can be hindered by distraction. Observational studies suggest that pedestrians are increasingly likely to ‘multitask’, using mobile technology for entertainment and communication, elevating the risk of distraction while crossing. To investigate this, intercept interviews were conducted with a convenience sample of 211 pedestrians aged 18-65 years in Brisbane CBD. Self-reported frequency of using a smart phone for activities at two levels of distraction: cognitive only (voice calls); or cognitive and visual (text messages, internet access) while walking or crossing the road was collected. Results indicated that smart phone use for potentially distracting activities while walking and while crossing the road was high, especially among 18-30 year olds, who were significantly more likely than 31-44yo or 45-65yo to report smart phone use while crossing the road. For 18-30yo and the higher risk activity of crossing the road, 32% texted at high frequency levels and 27% used internet at high frequency levels. Risky levels of distracted crossing appear to be a growing safety issue for 18-30yo, with greater attention to appropriate interventions needed.
Resumo:
• Introduction: Concern and action for rural road safety is relatively new in Australia in comparison to the field of traffic safety as a whole. In 2003, a program of research was begun by the Centre for Accident Research and Road Safety - Queensland (CARRS-Q) and the Rural Health Research Unit (RHRU) at James Cook University to investigate factors contributing to serious rural road crashes in the North Queensland region. This project was funded by the Premier’s Department, Main Roads Department, Queensland Transport, QFleet, Queensland Rail, Queensland Ambulance Service, Department of Natural Resources and Queensland Police Service. Additional funding was provided by NRMA Insurance for a PhD scholarship. In-kind support was provided through the four hospitals used for data collection, namely Cairns Base Hospital, The Townsville Hospital, Mount Isa Hospital and Atherton Hospital.----- The primary aim of the project was to: Identify human factors related to the occurrence of serious traffic incidents in rural and remote areas of Australia, and to the trauma suffered by persons as a result of these incidents, using a sample drawn from a rural and remote area in North Queensland.----- The data and analyses presented in this report are the core findings from two broad studies: a general examination of fatalities and casualties from rural and remote crashes for the period 1 March 2004 until 30 June 2007, and a further linked case-comparison study of hospitalised patients compared with a sample of non-crash-involved drivers.----- • Method: The study was undertaken in rural North Queensland, as defined by the Australian Bureau of Statistics (ABS) statistical divisions of North Queensland, Far North Queensland and North-West Queensland. Urban areas surrounding Townsville, Thuringowa and Cairns were not included. The study methodology was centred on serious crashes, as defined by a resulting hospitalisation for 24 hours or more and/or a fatality. Crashes meeting this criteria within the North Queensland region between 1 March 2004 and 30 June 2007 were identified through hospital records and interviewed where possible. Additional data was sourced from coroner’s reports, the Queensland Transport road crash database, the Queensland Ambulance Service and the study hospitals in the region.----- This report is divided into chapters corresponding to analyses conducted on the collected crash and casualty data.----- Chapter 3 presents an overview of all crashes and casualties identified during the study period. Details are presented in regard to the demographics and road user types of casualties; the locations, times, types, and circumstances of crashes; along with the contributing circumstances of crashes.----- Chapter 4 presents the results of summary statistics for all casualties for which an interview was able to be conducted. Statistics are presented separately for drivers and riders, passengers, pedestrians and cyclists. Details are also presented separately for drivers and riders crashing in off-road and on-road settings. Results from questionnaire data are presented in relation to demographics; the experience of the crash in narrative form; vehicle characteristics and maintenance; trip characteristics (e.g. purpose and length of journey; periods of fatigue and monotony; distractions from driving task); driving history; alcohol and drug use; medical history; driving attitudes, intentions and behaviour; attitudes to enforcement; and experience of road safety advertising.----- Chapter 5 compares the above-listed questionnaire results between on-road crash-involved casualties and interviews conducted in the region with non-crash-involved persons. Direct comparisons as well as age and sex adjusted comparisons are presented.----- Chapter 6 presents information on those casualties who were admitted to one of the study hospitals during the study period. Brief information is given regarding the demographic characteristics of these casualties. Emergency services’ data is used to highlight the characteristics of patient retrieval and transport to and between hospitals. The major injuries resulting from the crashes are presented for each region of the body and analysed by vehicle type, occupant type, seatbelt status, helmet status, alcohol involvement and nature of crash. Estimates are provided of the costs associated with in-hospital treatment and retrieval.----- Chapter 7 describes the characteristics of the fatal casualties and the nature and circumstances of the crashes. Demographics, road user types, licence status, crash type and contributing factors for crashes are presented. Coronial data is provided in regard to contributing circumstances (including alcohol, drugs and medical conditions), cause of death, resulting injuries, and restraint and helmet use.----- Chapter 8 presents the results of a comparison between casualties’ crash descriptions and police-attributed crash circumstances. The relative frequency of contributing circumstances are compared both broadly within the categories of behavioural, environmental, vehicle related, medical and other groupings and specifically for circumstances within these groups.----- Chapter 9 reports on the associated research projects which have been undertaken on specific topics related to rural road safety.----- Finally, Chapter 10 reports on the conclusions and recommendations made from the program of research.---- • Major Recommendations : From the findings of these analyses, a number of major recommendations were made: + Male drivers and riders - Male drivers and riders should continue to be the focus of interventions, given their very high representation among rural and remote road crash fatalities and serious injuries.----- - The group of males aged between 30 and 50 years comprised the largest number of casualties and must also be targeted for change if there is to be a meaningful improvement in rural and remote road safety.----- + Motorcyclists - Single vehicle motorcycle crashes constitute over 80% of serious, on-road rural motorcycle crashes and need particular attention in development of policy and infrastructure.----- - The motorcycle safety consultation process currently being undertaken by Queensland Transport (via the "Motorbike Safety in Queensland - Consultation Paper") is strongly endorsed. As part of this process, particular attention needs to be given to initiatives designed to reduce rural and single vehicle motorcycle crashes.----- - The safety of off-road riders is a serious problem that falls outside the direct responsibility of either Transport or Health departments. Responsibility for this issue needs to be attributed to develop appropriate policy, regulations and countermeasures.----- + Road safety for Indigenous people - Continued resourcing and expansion of The Queensland Aboriginal Peoples and Torres Strait Islander Peoples Driver Licensing Program to meet the needs of remote and Indigenous communities with significantly lower licence ownership levels.----- - Increased attention needs to focus on the contribution of geographic disadvantage (remoteness) factors to remote and Indigenous road trauma.----- + Road environment - Speed is the ‘final common pathway’ in determining the severity of rural and remote crashes and rural speed limits should be reduced to 90km/hr for sealed off-highway roads and 80km/hr for all unsealed roads as recommended in the Austroads review and in line with the current Tasmanian government trial.----- - The Department of Main Roads should monitor rural crash clusters and where appropriate work with local authorities to conduct relevant audits and take mitigating action. - The international experts at the workshop reviewed the data and identified the need to focus particular attention on road design management for dangerous curves. They also indicated the need to maximise the use of audio-tactile linemarking (audible lines) and rumble strips to alert drivers to dangerous conditions and behaviours.----- + Trauma costs - In accordance with Queensland Health priorities, recognition should be given to the substantial financial costs associated with acute management of trauma resulting from serious rural and remote crashes.----- - Efforts should be made to develop a comprehensive, regionally specific costing formula for road trauma that incorporates the pre-hospital, hospital and post-hospital phases of care. This would inform health resource allocation and facilitate the evaluation of interventions.----- - The commitment of funds to the development of preventive strategies to reduce rural and remote crashes should take into account the potential cost savings associated with trauma.----- - A dedicated study of the rehabilitation needs and associated personal and healthcare costs arising from rural and remote road crashes should be undertaken.----- + Emergency services - While the study has demonstrated considerable efficiency in the response and retrieval systems of rural and remote North Queensland, relevant Intelligent Transport Systems technologies (such as vehicle alarm systems) to improve crash notification should be both developed and evaluated.----- + Enforcement - Alcohol and speed enforcement programs should target the period between 2 and 6pm because of the high numbers of crashes in the afternoon period throughout the rural region.----- + Drink driving - Courtesy buses should be advocated and schemes such as the Skipper project promoted as local drink driving countermeasures in line with the very high levels of community support for these measures identified in the hospital study.------ - Programs should be developed to target the high levels of alcohol consumption identified in rural and remote areas and related involvement in crashes.----- - Referrals to drink driving rehabilitation programs should be mandated for recidivist offenders.----- + Data requirements - Rural and remote road crashes should receive the same quality of attention as urban crashes. As such, it is strongly recommended that increased resources be committed to enable dedicated Forensic Crash Units to investigate rural and remote fatal and serious injury crashes.----- - Transport department records of rural and remote crashes should record the crash location using the national ARIA area classifications used by health departments as a means to better identifying rural crashes.----- - Rural and remote crashes tend to be unnoticed except in relatively infrequent rural reviews. They should receive the same level of attention and this could be achieved if fatalities and fatal crashes were coded by the ARIA classification system and included in regular crash reporting.----- - Health, Transport and Police agencies should collect a common, minimal set of data relating to road crashes and injuries, including presentations to small rural and remote health facilities.----- + Media and community education programmes - Interventions seeking to highlight the human contribution to crashes should be prioritised. Driver distraction, alcohol and inappropriate speed for the road conditions are key examples of such behaviours.----- - Promotion of basic safety behaviours such as the use of seatbelts and helmets should be given a renewed focus.----- - Knowledge, attitude and behavioural factors that have been identified for the hospital Brief Intervention Trial should be considered in developing safety campaigns for rural and remote people. For example challenging the myth of the dangerous ‘other’ or ‘non-local’ driver.----- - Special educational initiatives on the issues involved in rural and remote driving should be undertaken. For example the material used by Main Roads, the Australian Defence Force and local initiatives.
Resumo:
Road curves are an important feature of road infrastructure and many serious crashes occur on road curves. In Queensland, the number of fatalities is twice as many on curves as that on straight roads. Therefore, there is a need to reduce drivers’ exposure to crash risk on road curves. Road crashes in Australia and in the Organisation for Economic Co-operation and Development(OECD) have plateaued in the last five years (2004 to 2008) and the road safety community is desperately seeking innovative interventions to reduce the number of crashes. However, designing an innovative and effective intervention may prove to be difficult as it relies on providing theoretical foundation, coherence, understanding, and structure to both the design and validation of the efficiency of the new intervention. Researchers from multiple disciplines have developed various models to determine the contributing factors for crashes on road curves with a view towards reducing the crash rate. However, most of the existing methods are based on statistical analysis of contributing factors described in government crash reports. In order to further explore the contributing factors related to crashes on road curves, this thesis designs a novel method to analyse and validate these contributing factors. The use of crash claim reports from an insurance company is proposed for analysis using data mining techniques. To the best of our knowledge, this is the first attempt to use data mining techniques to analyse crashes on road curves. Text mining technique is employed as the reports consist of thousands of textual descriptions and hence, text mining is able to identify the contributing factors. Besides identifying the contributing factors, limited studies to date have investigated the relationships between these factors, especially for crashes on road curves. Thus, this study proposed the use of the rough set analysis technique to determine these relationships. The results from this analysis are used to assess the effect of these contributing factors on crash severity. The findings obtained through the use of data mining techniques presented in this thesis, have been found to be consistent with existing identified contributing factors. Furthermore, this thesis has identified new contributing factors towards crashes and the relationships between them. A significant pattern related with crash severity is the time of the day where severe road crashes occur more frequently in the evening or night time. Tree collision is another common pattern where crashes that occur in the morning and involves hitting a tree are likely to have a higher crash severity. Another factor that influences crash severity is the age of the driver. Most age groups face a high crash severity except for drivers between 60 and 100 years old, who have the lowest crash severity. The significant relationship identified between contributing factors consists of the time of the crash, the manufactured year of the vehicle, the age of the driver and hitting a tree. Having identified new contributing factors and relationships, a validation process is carried out using a traffic simulator in order to determine their accuracy. The validation process indicates that the results are accurate. This demonstrates that data mining techniques are a powerful tool in road safety research, and can be usefully applied within the Intelligent Transport System (ITS) domain. The research presented in this thesis provides an insight into the complexity of crashes on road curves. The findings of this research have important implications for both practitioners and academics. For road safety practitioners, the results from this research illustrate practical benefits for the design of interventions for road curves that will potentially help in decreasing related injuries and fatalities. For academics, this research opens up a new research methodology to assess crash severity, related to road crashes on curves.
Resumo:
Scoping Project: Currently no national or structured learning framework available in Aus or NZ Current Project: Develop a national training program & capability framework for rail incident investigators - Establish the potential market demand - Define the curricula for a multi-level national training program - Explore training providers & delivery options
Resumo:
This paper provides much needed consolidation of the available evidence in relation to the design and evaluation of road safety advertising messages. Drawing upon current knowledge, the paper identifies some key challenges for improving both the persuasiveness of messages and the methods utilised to assess their effectiveness. The paper identifies some key message-related and individual difference factors, such as response efficacy, emotion, gender and involvement, which theoretical and empirical evidence has shown to be key determinants of message persuasiveness. In relation to message evaluation, the paper focuses upon research relating to the direct, persuasive role of advertising as opposed to evaluations of the combined effects of advertising and enforcement. The paper reviews methodological limitations of previous studies and gaps in existing knowledge that together limit the ability to draw accurate and comprehensive conclusions regarding message effectiveness. Overall, this paper provides a significant and timely review of what is currently known about road safety advertising design and evaluation.
Resumo:
Vehicle detectors have been installed at approximately every 300 meters on each lane on Tokyo metropolitan expressway. Various traffic data such as traffic volume, average speed and time occupancy are collected by vehicle detectors. We can understand traffic characteristics of every point by comparing traffic data collected at consecutive points. In this study, we focused on average speed, analyzed road potential by operating speed during free-flow conditions, and identified latent bottlenecks. Furthermore, we analyzed effects for road potential by the rainfall level and day of the week. It’s expected that this method of analysis will be utilized for installation of ITS such as drive assist, estimation of parameters for traffic simulation and feedback to road design as congestion measures.
Resumo:
Road features extraction from remote sensed imagery has been a long-term topic of great interest within the photogrammetry and remote sensing communities for over three decades. The majority of the early work only focused on linear feature detection approaches, with restrictive assumption on image resolution and road appearance. The widely available of high resolution digital aerial images makes it possible to extract sub-road features, e.g. road pavement markings. In this paper, we will focus on the automatic extraction of road lane markings, which are required by various lane-based vehicle applications, such as, autonomous vehicle navigation, and lane departure warning. The proposed approach consists of three phases: i) road centerline extraction from low resolution image, ii) road surface detection in the original image, and iii) pavement marking extraction on the generated road surface. The proposed method was tested on the aerial imagery dataset of the Bruce Highway, Queensland, and the results demonstrate the efficiency of our approach.