76 resultados para Occupancy Grid
Resumo:
Understanding the motion characteristics of on-site objects is desirable for the analysis of construction work zones, especially in problems related to safety and productivity studies. This article presents a methodology for rapid object identification and tracking. The proposed methodology contains algorithms for spatial modeling and image matching. A high-frame-rate range sensor was utilized for spatial data acquisition. The experimental results indicated that an occupancy grid spatial modeling algorithm could quickly build a suitable work zone model from the acquired data. The results also showed that an image matching algorithm is able to find the most similar object from a model database and from spatial models obtained from previous scans. It is then possible to use the matched information to successfully identify and track objects.
Resumo:
On obstacle-cluttered construction sites, understanding the motion characteristics of objects is important for anticipating collisions and preventing accidents. This study investigates algorithms for object identification applications that can be used by heavy equipment operators to effectively monitor congested local environment. The proposed framework contains algorithms for three-dimensional spatial modeling and image matching that are based on 3D images scanned by a high-frame rate range sensor. The preliminary results show that an occupancy grid spatial modeling algorithm can successfully build the most pertinent spatial information, and that an image matching algorithm is best able to identify which objects are in the scanned scene.
Resumo:
The challenge of persistent appearance-based navigation and mapping is to develop an autonomous robotic vision system that can simultaneously localize, map and navigate over the lifetime of the robot. However, the computation time and memory requirements of current appearance-based methods typically scale not only with the size of the environment but also with the operation time of the platform; also, repeated revisits to locations will develop multiple competing representations which reduce recall performance. In this paper we present a solution to the persistent localization, mapping and global path planning problem in the context of a delivery robot in an office environment over a one-week period. Using a graphical appearance-based SLAM algorithm, CAT-Graph, we demonstrate constant time and memory loop closure detection with minimal degradation during repeated revisits to locations, along with topological path planning that improves over time without using a global metric representation. We compare the localization performance of CAT-Graph to openFABMAP, an appearance-only SLAM algorithm, and the path planning performance to occupancy-grid based metric SLAM. We discuss the limitations of the algorithm with regard to environment change over time and illustrate how the topological graph representation can be coupled with local movement behaviors for persistent autonomous robot navigation.
Resumo:
Real-Time Kinematic (RTK) positioning is a technique used to provide precise positioning services at centimetre accuracy level in the context of Global Navigation Satellite Systems (GNSS). While a Network-based RTK (N-RTK) system involves multiple continuously operating reference stations (CORS), the simplest form of a NRTK system is a single-base RTK. In Australia there are several NRTK services operating in different states and over 1000 single-base RTK systems to support precise positioning applications for surveying, mining, agriculture, and civil construction in regional areas. Additionally, future generation GNSS constellations, including modernised GPS, Galileo, GLONASS, and Compass, with multiple frequencies have been either developed or will become fully operational in the next decade. A trend of future development of RTK systems is to make use of various isolated operating network and single-base RTK systems and multiple GNSS constellations for extended service coverage and improved performance. Several computational challenges have been identified for future NRTK services including: • Multiple GNSS constellations and multiple frequencies • Large scale, wide area NRTK services with a network of networks • Complex computation algorithms and processes • Greater part of positioning processes shifting from user end to network centre with the ability to cope with hundreds of simultaneous users’ requests (reverse RTK) There are two major requirements for NRTK data processing based on the four challenges faced by future NRTK systems, expandable computing power and scalable data sharing/transferring capability. This research explores new approaches to address these future NRTK challenges and requirements using the Grid Computing facility, in particular for large data processing burdens and complex computation algorithms. A Grid Computing based NRTK framework is proposed in this research, which is a layered framework consisting of: 1) Client layer with the form of Grid portal; 2) Service layer; 3) Execution layer. The user’s request is passed through these layers, and scheduled to different Grid nodes in the network infrastructure. A proof-of-concept demonstration for the proposed framework is performed in a five-node Grid environment at QUT and also Grid Australia. The Networked Transport of RTCM via Internet Protocol (Ntrip) open source software is adopted to download real-time RTCM data from multiple reference stations through the Internet, followed by job scheduling and simplified RTK computing. The system performance has been analysed and the results have preliminarily demonstrated the concepts and functionality of the new NRTK framework based on Grid Computing, whilst some aspects of the performance of the system are yet to be improved in future work.
Resumo:
Modern enterprise knowledge management systems typically require distributed approaches and the integration of numerous heterogeneous sources of information. A powerful foundation for these tasks can be Topic Maps, which not only provide a semantic net-like knowledge representation means and the possibility to use ontologies for modelling knowledge structures, but also offer concepts to link these knowledge structures with unstructured data stored in files, external documents etc. In this paper, we present the architecture and prototypical implementation of a Topic Map application infrastructure, the ‘Topic Grid’, which enables transparent, node-spanning access to different Topic Maps distributed in a network.
Resumo:
Grid music systems provide discrete geometric methods for simplified music-making by providing spatialised input to construct patterned music on a 2D matrix layout. While they are conceptually simple, grid systems may be layered to enable complex and satisfying musical results. Grid music systems have been applied to a range of systems from small portable devices up to larger systems. In this paper we will discuss the use of grid music systems in general and present an overview of the HarmonyGrid system we have developed as a new interactive performance system. We discuss a range of issues related to the design and use of larger-scale grid- based interactive performance systems such as the HarmonyGrid.
Resumo:
The international focus on embracing daylighting for energy efficient lighting purposes and the corporate sector’s indulgence in the perception of workplace and work practice “transparency” has spurned an increase in highly glazed commercial buildings. This in turn has renewed issues of visual comfort and daylight-derived glare for occupants. In order to ascertain evidence, or predict risk, of these events; appraisals of these complex visual environments require detailed information on the luminances present in an occupant’s field of view. Conventional luminance meters are an expensive and time consuming method of achieving these results. To create a luminance map of an occupant’s visual field using such a meter requires too many individual measurements to be a practical measurement technique. The application of digital cameras as luminance measurement devices has solved this problem. With high dynamic range imaging, a single digital image can be created to provide luminances on a pixel-by-pixel level within the broad field of view afforded by a fish-eye lens: virtually replicating an occupant’s visual field and providing rapid yet detailed luminance information for the entire scene. With proper calibration, relatively inexpensive digital cameras can be successfully applied to the task of luminance measurements, placing them in the realm of tools that any lighting professional should own. This paper discusses how a digital camera can become a luminance measurement device and then presents an analysis of results obtained from post occupancy measurements from building assessments conducted by the Mobile Architecture Built Environment Laboratory (MABEL) project. This discussion leads to the important realisation that the placement of such tools in the hands of lighting professionals internationally will provide new opportunities for the lighting community in terms of research on critical issues in lighting such as daylight glare and visual quality and comfort.
Resumo:
The paper proposes a solution for testing of a physical distributed generation system (DGs) along with a computer simulated network. The computer simulated network is referred as the virtual grid in this paper. Integration of DG with the virtual grid provides broad area of testing of power supplying capability and dynamic performance of a DG. It is shown that a DG can supply a part of load power while keeping Point of Common Coupling (PCC) voltage magnitude constant. To represent the actual load, a universal load along with power regenerative capability is designed with the help of voltage source converter (VSC) that mimics the load characteristic. The overall performance of the proposed scheme is verified using computer simulation studies.