111 resultados para Object naming
Resumo:
It is well established that the time to name target objects can be influenced by the presence of categorically related versus unrelated distractor items. A variety of paradigms have been developed to determine the level at which this semantic interference effect occurs in the speech production system. In this study, we investigated one of these tasks, the postcue naming paradigm, for the first time with fMRI. Previous behavioural studies using this paradigm have produced conflicting interpretations of the processing level at which the semantic interference effect takes place, ranging from pre- to post-lexical. Here we used fMRI with a sparse, event-related design to adjudicate between these competing explanations. We replicated the behavioural postcue naming effect for categorically related target/distractor pairs, and observed a corresponding increase in neuronal activation in the right lingual and fusiform gyri-regions previously associated with visual object processing and colour-form integration. We interpret these findings as being consistent with an account that places the semantic interference effect in the postcue paradigm at a processing level involving integration of object attributes in short-term memory.
Resumo:
Previous behavioral studies reported a robust effect of increased naming latencies when objects to be named were blocked within semantic category, compared to items blocked between category. This semantic context effect has been attributed to various mechanisms including inhibition or excitation of lexico-semantic representations and incremental learning of associations between semantic features and names, and is hypothesized to increase demands on verbal self-monitoring during speech production. Objects within categories also share many visual structural features, introducing a potential confound when interpreting the level at which the context effect might occur. Consistent with previous findings, we report a significant increase in response latencies when naming categorically related objects within blocks, an effect associated with increased perfusion fMRI signal bilaterally in the hippocampus and in the left middle to posterior superior temporal cortex. No perfusion changes were observed in the middle section of the left middle temporal cortex, a region associated with retrieval of lexical-semantic information in previous object naming studies. Although a manipulation of visual feature similarity did not influence naming latencies, we observed perfusion increases in the perirhinal cortex for naming objects with similar visual features that interacted with the semantic context in which objects were named. These results provide support for the view that the semantic context effect in object naming occurs due to an incremental learning mechanism, and involves increased demands on verbal self-monitoring.
Resumo:
This paper investigates how neuronal activation for naming photographs of objects is influenced by the addition of appropriate colour or sound. Behaviourally, both colour and sound are known to facilitate object recognition from visual form. However, previous functional imaging studies have shown inconsistent effects. For example, the addition of appropriate colour has been shown to reduce antero-medial temporal activation whereas the addition of sound has been shown to increase posterior superior temporal activation. Here we compared the effect of adding colour or sound cues in the same experiment. We found that the addition of either the appropriate colour or sound increased activation for naming photographs of objects in bilateral occipital regions and the right anterior fusiform. Moreover, the addition of colour reduced left antero-medial temporal activation but this effect was not observed for the addition of object sound. We propose that activation in bilateral occipital and right fusiform areas precedes the integration of visual form with either its colour or associated sound. In contrast, left antero-medial temporal activation is reduced because object recognition is facilitated after colour and form have been integrated.
Resumo:
Long-lasting interference effects in picture naming are induced when objects are presented in categorically related contexts in both continuous and blocked cyclic paradigms. Less consistent context effects have been reported when the task is changed to semantic classification. Experiment 1 confirmed the recent finding of cumulative facilitation in the continuous paradigm with living/non-living superordinate categorization. To avoid a potential confound involving participants responding with the identical superordinate category in related contexts in the blocked cyclic paradigm, we devised a novel set of categorically related objects that also varied in terms of relative age – a core semantic type associated with the adjective word class across languages. Experiment 2 demonstrated the typical interference effect with these stimuli in basic level naming. In Experiment 3, using the identical blocked cyclic paradigm, we failed to observe semantic context effects when the same pictures were classified as younger–older. Overall, the results indicate the semantic context effects in the two paradigms do not share a common origin, with the effect in the continuous paradigm arising at the level of conceptual representations or in conceptual-to-lexical connections while the effect in the blocked cyclic paradigm most likely originates at a lexical level of representation. The implications of these findings for current accounts of long-lasting interference effects in spoken word production are discussed.
Resumo:
The context in which objects are presented influences the speed at which they are named. We employed the blocked cyclic naming paradigm and perfusion functional magnetic resonance imaging (fMRI) to investigate the mechanisms responsible for interference effects reported for thematicallyand categorically related compared to unrelated contexts. Naming objects in categorically homogeneous contexts induced a significant interference effect that accumulated from the second cycle onwards. This interference effect was associated with significant perfusion signal decreases in left middle and posterior lateral temporal cortex and the hippocampus. By contrast, thematically homogeneous contexts facilitated naming latencies significantly in the first cycle and did not differ from heterogeneous contexts thereafter, nor were they associated with any perfusion signal changes compared to heterogeneous contexts. These results are interpreted as being consistent with an account in which the interference effect both originates and has its locus at the lexical level, with an incremental learning mechanism adapting the activation levels of target lexical representations following access. We discuss the implications of these findings for accounts that assume thematic relations can be active lexical competitors or assume mandatory involvement of top-down control mechanisms in interference effects during naming.
Resumo:
Ignoring an object slows subsequent naming responses to it, a phenomenon known as negative priming (NP). A central issue in NP research concerns the level of representation at which the effect occurs. As object naming is typically considered to involve access to abstract semantic representations, Tipper 1985 proposed that the NP effect occurred at this level of processing, and other researchers supported this proposal by demonstrating a similar result with categorically related objects (e.g., Allport et al., 1985; Murray, 1995), an effect referred to as semantic NP. However, objects within categories share more physical or structural features than objects from different categories. Consequently, the NP effect observed with categorically related objects might occur at a structural rather than semantic level of representation. We used event related fMRI interleaving overt object naming and image acquisition to demonstrate for the first time that the semantic NP effect activates the left posterior-mid fusiform and insular-opercular cortices. Moreover, both naming latencies and left posterior-mid fusiform cortex responses were influenced by the structural similarity of prime-probe object pairings in the categorically related condition, increasing with the number of shared features. None of the cerebral regions activated in a previous fMRI study of the identity NP effect (de Zubicaray et al., 2006) showed similar activation during semantic NP, including the left anterolateral temporal cortex, a region considered critical for semantic processing. The results suggest that the identity and semantic NP effects differ with respect to their neural mechanisms, and the label "semantic NP" might be a misnomer. We conclude that the effect is most likely the result of competition between structurally similar category exemplars that determines the efficiency of object name retrieval.
Resumo:
Background: The majority of studies investigating the neural mechanisms underlying treatment in people with aphasia have examined task-based brain activity. However, the use of resting-state fMRI may provide another method of examining the brain mechanisms responsible for treatment-induced recovery, and allows for investigation into connectivity within complex functional networks Methods: Eight people with aphasia underwent 12 treatment sessions that aimed to improve object naming. Half the sessions employed a phonologically-based task, and half the sessions employed a semantic-based task, with resting-state fMRI conducted pre- and post-treatment. Brain regions in which the amplitude of low frequency fluctuations (ALFF) correlated with treatment outcomes were used as seeds for functional connectivity (FC) analysis. FC maps were compared from pre- to post-treatment, as well as with a group of 12 healthy older controls Results: Pre-treatment ALFF in the right middle temporal gyrus (MTG) correlated with greater outcomes for the phonological treatment, with a shift to the left MTG and supramarginal gyrus, as well as the right inferior frontal gyrus, post-treatment. When compared to controls, participants with aphasia showed both normalization and up-regulation of connectivity within language networks post-treatment, predominantly in the left hemisphere Conclusions: The results provide preliminary evidence that treatments for naming impairments affect the FC of language networks, and may aid in understanding the neural mechanisms underlying the rehabilitation of language post-stroke.
Resumo:
Naming an object entails a number of processing stages, including retrieval of a target lexical concept and encoding of its phonological word form. We investigated these stages using the picture-word interference task in an fMRI experiment. Participants named target pictures in the presence of auditorily presented semantically related, phonologically related, or unrelated distractor words or in isolation. We observed BOLD signal changes in left-hemisphere regions associated with lexical-conceptual and phonological processing, including the midto-posterior lateral temporal cortex. However, these BOLD responses manifested as signal reductions for all distractor conditions relative to naming alone. Compared with unrelated words, phonologically related distractors showed further signal reductions, whereas only the pars orbitalis of the left inferior frontal cortex showed a selective reduction in response in the semantic condition. We interpret these findings as indicating that the word forms of lexical competitors are phonologically encoded and that competition during lexical selection is reduced by phonologically related distractors. Since the extended nature of auditory presentation requires a large portion of a word to be presented before its meaning is accessed, we attribute the BOLD signal reductions observed for semantically related and unrelated words to lateral inhibition mechanisms engaged after target name selection has occurred, as has been proposed in some production models.
Resumo:
In the picture-word interference task, naming responses are facilitated when a distractor word is orthographically and phonologically related to the depicted object as compared to an unrelated word. We used event-related functional magnetic resonance imaging (fMRI) to investigate the cerebral hemodynamic responses associated with this priming effect. Serial (or independent-stage) and interactive models of word production that explicitly account for picture-word interference effects assume that the locus of the effect is at the level of retrieving phonological codes, a role attributed recently to the left posterior superior temporal cortex (Wernicke's area). This assumption was tested by randomly presenting participants with trials from orthographically related and unrelated distractor conditions and acquiring image volumes coincident with the estimated peak hemodynamic response for each trial. Overt naming responses occurred in the absence of scanner noise, allowing reaction time data to be recorded. Analysis of this data confirmed the priming effect. Analysis of the fMRI data revealed blood oxygen level-dependent signal decreases in Wernicke's area and the right anterior temporal cortex, whereas signal increases were observed in the anterior cingulate, the right orbitomedial prefrontal, somatosensory, and inferior parietal cortices, and the occipital lobe. The results are interpreted as supporting the locus for the facilitation effect as assumed by both classes of theoretical model of word production. In addition, our results raise the possibilities that, counterintuitively, picture-word interference might be increased by the presentation of orthographically related distractors, due to competition introduced by activation of phonologically related word forms, and that this competition requires inhibitory processes to be resolved. The priming effect is therefore viewed as being sufficient to offset the increased interference. We conclude that information from functional imaging studies might be useful for constraining theoretical models of word production.
Resumo:
Objects presented in categorically related contexts are typically named slower than objects presented in unrelated contexts, a phenomenon termed semantic interference. However, not all semantic relationships induce interference. In the present study, we investigated the influence of object part-relations in the blocked cyclic naming paradigm. In Experiment 1 we established that an object's parts do induce a semantic interference effect when named in context compared to unrelated parts (e.g., leaf, root, nut, bark; for tree). In Experiment 2) we replicated the effect during perfusion functional magnetic resonance imaging (fMRI) to identify the cerebral regions involved. The interference effect was associated with significant perfusion signal increases in the hippocampal formation and decreases in the dorsolateral prefrontal cortex. We failed to observe significant perfusion signal changes in the left lateral temporal lobe, a region that shows reliable activity for interference effects induced by categorical relations in the same paradigm and is proposed to mediate lexical-semantic processing. We interpret these results as supporting recent explanations of semantic interference in blocked cyclic naming that implicate working memory mechanisms. However, given the failure to observe significant perfusion signal changes in the left temporal lobe, the results provide only partial support for accounts that assume semantic interference in this paradigm arises solely due to lexical-level processes.
Resumo:
Metaphor is a multi-stage programming language extension to an imperative, object-oriented language in the style of C# or Java. This paper discusses some issues we faced when applying multi-stage language design concepts to an imperative base language and run-time environment. The issues range from dealing with pervasive references and open code to garbage collection and implementing cross-stage persistence.
Resumo:
This paper offers an analysis of cultural politics that emerged around naming practices in an ethnographic study of the interactions within an online MBA unit, offered by an Australian university to both ‘local’ Australian students and international students enrolled through a Malaysian partner institution. It became evident that names were doing important identity, textual and pedagogical work in these interactions and considerable interactive trouble arose over the social practices surrounding names. The analysis uses sociolinguistic concepts to analyse selected slices of the online texts and participants' interview accounts. The analysis shows how ethnocentric default settings in the courseware served to heighten and exacerbate cultural difference as a pedagogical problem. These events are related to the larger problematic of theorising the context of culture in times of globalisation and increasingly entangled educational routes, with implications for the enterprise of online internationalised education.
Resumo:
Measuring quality attributes of object-oriented designs (e.g. maintainability and performance) has been covered by a number of studies. However, these studies have not considered security as much as other quality attributes. Also, most security studies focus at the level of individual program statements. This approach makes it hard and expensive to discover and fix vulnerabilities caused by design errors. In this work, we focus on the security design of an object oriented application and define a number of security metrics. These metrics allow designers to discover and fix security vulnerabilities at an early stage, and help compare the security of various alternative designs. In particular, we propose seven security metrics to measure Data Encapsulation (accessibility) and Cohesion (interactions) of a given object-oriented class from the point of view of potential information flow.