219 resultados para Nuclear genes
Resumo:
Phylogenetic relationships within the Tabanidae are largely unknown, despite their considerable medical and ecological importance. The first robust phylogenetic hypothesis for the horse fly tribe Scionini is provided, completing the systematic placement of all tribes in the subfamily Pangoniinae. The Scionini consists of seven mostly southern hemisphere genera distributed in Australia, New Guinea, New Zealand and South America. A 5757. bp alignment of 6 genes, including mitochondrial (COI and COII), ribosomal (28S) and nuclear (AATS and CAD regions 1, 3 and 4) genes, was analysed for 176 taxa using both Bayesian and maximum likelihood approaches. Results indicate the Scionini are strongly monophyletic, with the exclusion of the only northern hemisphere genus Goniops. The South American genera Fidena, Pityocera and Scione were strongly monophyletic, corresponding to current morphology-based classification schemes. The most widespread genus Scaptia was paraphyletic and formed nine strongly supported monophyletic clades, each corresponding to either the current subgenera or several previously synonymised genera that should be formally resurrected. Molecular results also reveal a newly recognised genus endemic to New Zealand, formerly placed within Scaptia. Divergence time estimation was employed to assess the global biogeographical patterns in the Pangoniinae. These analyses demonstrated that the Scionini are a typical Gondwanan group whose diversification was influenced by the fragmentation of that ancient land mass. Furthermore, results indicate that the Scionini most likely originated in Australia and subsequently radiated to New Zealand and South American by both long distance dispersal and vicariance. The phylogenetic framework of the Scionini provided herein will be valuable for taxonomic revisions of the Tabanidae.
Resumo:
Understanding the evolutionary history and phylogenetic relationships between rare and common species is necessary for the effective management of rare species. The genus Cherax, a group of freshwater crayfish species, is of interest in this regard as a number of species are rare or have restricted distributions while other species are common and widespread. Here we describe the characterisation of three novel nuclear genes of the haemocyanin superfamily for phylogenetic reconstruction of the genus. All novel markers developed in this study amplified consistently in species from three divergent clades of the genus Cherax. The level of polymorphism found in these markers was consistently higher than that found in other nuclear genes previously used in invertebrate systematics, such as NaK ATP-ase. In combination, these markers will be useful to delineate phylogenetic relationships between rare and common Cherax species.
Resumo:
The marsupial genus Macropus includes three subgenera, the familiar large grazing kangaroos and wallaroos of M. (Macropus) and M. (Osphranter), as well as the smaller mixed grazing/browsing wallabies of M. (Notamacropus). A recent study of five concatenated nuclear genes recommended subsuming the predominantly browsing Wallabia bicolor (swamp wallaby) into Macropus. To further examine this proposal we sequenced partial mitochondrial genomes for kangaroos and wallabies. These sequences strongly favour the morphological placement of W. bicolor as sister to Macropus, although place M. irma (black-gloved wallaby) within M. (Osphranter) rather than as expected, with M. (Notamacropus). Species tree estimation from separately analysed mitochondrial and nuclear genes favours retaining Macropus and Wallabia as separate genera. A simulation study finds that incomplete lineage sorting among nuclear genes is a plausible explanation for incongruence with the mitochondrial placement of W. bicolor, while mitochondrial introgression from a wallaroo into M. irma is the deepest such event identified in marsupials. Similar such coalescent simulations for interpreting gene tree conflicts will increase in both relevance and statistical power as species-level phylogenetics enters the genomic age. Ecological considerations in turn, hint at a role for selection in accelerating the fixation of introgressed or incompletely sorted loci. More generally the inclusion of the mitochondrial sequences substantially enhanced phylogenetic resolution. However, we caution that the evolutionary dynamics that enhance mitochondria as speciation indicators in the presence of incomplete lineage sorting may also render them especially susceptible to introgression.
Resumo:
We provide a taxonomic redescription of the Fawn Antechinus, Antechinus bellus (Thomas). A. bellus is the only member of its genus to occur in Australia’s Northern Territory, where it can be found in savannah woodlands of the Top End. It is perhaps the most distinctive antechinus, and clearly distinguishable from the other 10 extant species of antechinus found in Australia: externally, A. bellus has pale body fur, white feet and large ears; A. bellus skulls have large auditory bullae and narrow interorbital width, while broadening abruptly at the molar row; mitochondrial and nuclear genes clearly dis-tinguish A. bellus from all congeners, phylogenetically positioning the Fawn Antechinus as sister to Queensland’s A. leo Van Dyck, 1980, with which it shares a curled supratragus of the external ear and a similar tropical latitudinal range.
Resumo:
A phylogenetic hypothesis for the lepidopteran superfamily Noctuoidea was inferred based on the complete mitochondrial (mt) genomes of 12 species (six newly sequenced). The monophyly of each noctuoid family in the latest classification was well supported. Novel and robust relationships were recovered at the family level, in contrast to previous analyses using nuclear genes. Erebidae was recovered as sister to (Nolidae+(Euteliidae+Noctuidae)), while Notodontidae was sister to all these taxa (the putatively basalmost lineage Oenosandridae was not included). In order to improve phylogenetic resolution using mt genomes, various analytical approaches were tested: Bayesian inference (BI) vs. maximum likelihood (ML), excluding vs. including RNA genes (rRNA or tRNA), and Gblocks treatment. The evolutionary signal within mt genomes had low sensitivity to analytical changes. Inference methods had the most significant influence. Inclusion of tRNAs positively increased the congruence of topologies, while inclusion of rRNAs resulted in a range of phylogenetic relationships varying depending on other analytical factors. The two Gblocks parameter settings had opposite effects on nodal support between the two inference methods. The relaxed parameter (GBRA) resulted in higher support values in BI analyses, while the strict parameter (GBDH) resulted in higher support values in ML analyses.
Resumo:
Previous studies in our laboratory have shown association of nuclear receptor expression and histological breast cancer grade. To further investigate these findings, it was the objective of this study to determine if expression levels of the estrogen alpha, estrogen beta and androgen nuclear receptor genes varied in different breast cancer grades. RNA extracted from paraffin embedded archival breast tumour tissue was converted into cDNA and cDNA underwent PCR to enable quantitation of mRNA expression. Expression data was normalised against the 18S ribosomal gene multiplex and analysed using ANOVA. Analysis indicated a significant alteration of expression for the androgen receptor in different cancer grades (P=0.014), as well as in tissues that no longer possess estrogen receptor alpha proteins (P=0.025). However, expression of estrogen receptors alpha and beta did not vary significantly with cancer grade (P=0.057 and 0.622, respectively). Also, the expression of estrogen receptor alpha or beta did not change, regardless of the presence of estrogen receptor alpha protein in the tissue (P=0.794 and 0.716, respectively). Post-hoc tests indicate that the expression of the androgen receptor is increased in estrogen receptor negative tissue as well as in grade 2 and grade 3 tumours, compared to control tissue. This increased expression in late stage breast tumours may have implications to the treatment of breast tumours, particularly those lacking expression of other nuclear receptor genes.
Resumo:
BACKGROUND: Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. METHODS: RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. RESULTS: Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). CONCLUSION: Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue.
Resumo:
Systemic acquired resistance (SAR) is a broad-spectrum resistance in plants that involves the upregulation of a battery of pathogenesis-related (PR) genes. NPR1 is a key regulator in the signal transduction pathway that leads to SAR. Mutations in NPR1 result in a failure to induce PR genes in systemic tissues and a heightened susceptibility to pathogen infection, whereas overexpression of the NPR1 protein leads to increased induction of the PR genes and enhanced disease resistance. We analyzed the subcellular localization of NPR1 to gain insight into the mechanism by which this protein regulates SAR. An NPR1–green fluorescent protein fusion protein, which functions the same as the endogenous NPR1 protein, was shown to accumulate in the nucleus in response to activators of SAR. To control the nuclear transport of NPR1, we made a fusion of NPR1 with the glucocorticoid receptor hormone binding domain. Using this steroid-inducible system, we clearly demonstrate that nuclear localization of NPR1 is essential for its activity in inducing PR genes.
Resumo:
NF-Y is a heterotrimeric transcription factor complex. Each of the NF-Y subunits (NF-YA, NF-YB and NF-YC) in plants is encoded by multiple genes. Quantitative RT-PCR analysis revealed that five wheat NF-YC members (TaNF-YC5, 8, 9, 11 & 12) were upregulated by light in both the leaf and seedling shoot. Co-expression analysis of Affymetrix wheat genome array datasets revealed that transcript levels of a large number of genes were consistently correlated with those of the TaNF-YC11 and TaNF-YC8 genes in 3-4 separate Affymetrix array datasets. TaNF-YC11-correlated transcripts were significantly enriched with the Gene Ontology term photosynthesis. Sequence analysis in the promoters of TaNF-YC11-correlated genes revealed the presence of putative NF-Y complex binding sites (CCAAT motifs). Quantitative RT-PCR analysis of a subset of potential TaNF-YC11 target genes showed that ten out of the thirteen genes were also light-upregulated in both the leaf and seedling shoot and had significantly correlated expression profiles with TaNF-YC11. The potential target genes for TaNF-YC11 include subunit members from all four thylakoid membrane bound complexes required for the conversion of solar energy into chemical energy and rate limiting enzymes in the Calvin cycle. These data indicate that TaNF-YC11 is potentially involved in regulation of photosynthesis-related genes.
Resumo:
Nuclear Factor Y (NF-Y) transcription factor is a heterotrimer comprised of three subunits: NF-YA, NF-YB and NF-YC. Each of the three subunits in plants is encoded by multiple genes with differential expression profiles, implying the functional specialisation of NF-Y subunit members in plants. In this study, we investigated the roles of NF-YB members in the light-mediated regulation of photosynthesis genes. We identified two NF-YB members from Triticum aestivum (TaNF-YB3 & 7) which were markedly upregulated by light in the leaves and seedling shoots using quantitative RT-PCR. A genome-wide coexpression analysis of multiple Affymetrix Wheat Genome Array datasets revealed that TaNF-YB3-coexpressed transcripts were highly enriched with the Gene Ontology term photosynthesis. Transgenic wheat lines constitutively overexpressing TaNF-YB3 had a significant increase in the leaf chlorophyll content, photosynthesis rate and early growth rate. Quantitative RT-PCR analysis showed that the expression levels of a number of TaNF-YB3-coexpressed transcripts were elevated in the transgenic wheat lines. The mRNA level of TaGluTR encoding glutamyl-tRNA reductase, which catalyses the rate limiting step of the chlorophyll biosynthesis pathway, was significantly increased in the leaves of the transgenic wheat. Significant increases in the expression level in the transgenic plant leaves were also observed for four photosynthetic apparatus genes encoding chlorophyll a/b-binding proteins (Lhca4 and Lhcb4) and photosystem I reaction center subunits (subunit K and subunit N), as well as for a gene coding for chloroplast ATP synthase subunit. These results indicate that TaNF-YB3 is involved in the positive regulation of a number of photosynthesis genes in wheat.
Resumo:
Gemcitabine is indicated in combination with cisplatin as first-line therapy for solid tumours including non-small cell lung cancer (NSCLC), bladder cancer and mesothelioma. Gemcitabine is an analogue of pyrimidine cytosine and functions as an anti-metabolite. Structurally, however, gemcitabine has similarities to 5-aza-2-deoxycytidine (decitabine/Dacogen®), a DNA methyltransferase inhibitor (DNMTi). NSCLC, mesothelioma and prostate cancer cell lines were treated with decitabine and gemcitabine. Reactivation of epigenetically silenced genes was examined by RT-PCR/qPCR. DNA methyltransferase activity in nuclear extracts and recombinant proteins was measured using a DNA methyltransferase assay, and alterations in DNA methylation status were examined using methylation-specific PCR (MS-PCR) and pyrosequencing. We observe a reactivation of several epigenetically silenced genes including GSTP1, IGFBP3 and RASSF1A. Gemcitabine functionally inhibited DNA methyltransferase activity in both nuclear extracts and recombinant proteins. Gemcitabine dramatically destabilised DNMT1 protein. However, DNA CpG methylation was for the most part unaffected by gemcitabine. In conclusion, gemcitabine both inhibits and destabilises DNA methyltransferases and reactivates epigenetically silenced genes having activity equivalent to decitabine at concentrations significantly lower than those achieved in the treatment of patients with solid tumours. This property may contribute to the anticancer activity of gemcitabine.
Resumo:
In plants, silencing of mRNA can be transmitted from cell to cell and also over longer distances from roots to shoots. To investigate the long-distance mechanism, WT and mutant shoots were grafted onto roots silenced for an mRNA. We show that three genes involved in a chromatin silencing pathway, NRPD1a encoding RNA polymerase IVa, RNA-dependent RNA polymerase 2 (RDR2), and DICER-like 3 (DCL3), are required for reception of long-distance mRNA silencing in the shoot. A mutant representing a fourth gene in the pathway, argonaute4 (ago4), was also partially compromised in the reception of silencing. This pathway produces 24-nt siRNAs and resulted in decapped RNA, a known substrate for amplification of dsRNA by RDR6. Activation of silencing in grafted shoots depended on RDR6, but no 24-nt siRNAs were detected in mutant rdr6 shoots, indicating that RDR6 also plays a role in initial signal perception. After amplification of decapped transcripts, DCL4 and DCL2 act hierarchically as they do in antiviral resistance to produce 21- and 22-nt siRNAs, respectively, and these guide mRNA degradation. Several dcl genotypes were also tested for their capacity to transmit the mobile silencing signal from the rootstock. dcl1-8 and a dcl2 dcl3 dcl4 triple mutant are compromised in micro-RNA and siRNA biogenesis, respectively, but were unaffected in signal transmission. © 2007 by The National Academy of Sciences of the USA.
Resumo:
Intrinsic or acquired resistance to chemotherapeutic agents is a common phenomenon and a major challenge in the treatment of cancer patients. Chemoresistance is defined by a complex network of factors including multi-drug resistance proteins, reduced cellular uptake of the drug, enhanced DNA repair, intracellular drug inactivation, and evasion of apoptosis. Pre-clinical models have demonstrated that many chemotherapy drugs, such as platinum-based agents, antracyclines, and taxanes, promote the activation of the NF-κB pathway. NF-κB is a key transcription factor, playing a role in the development and progression of cancer and chemoresistance through the activation of a multitude of mediators including anti-apoptotic genes. Consequently, NF-κB has emerged as a promising anti-cancer target. Here, we describe the role of NF-κB in cancer and in the development of resistance, particularly cisplatin. Additionally, the potential benefits and disadvantages of targeting NF-κB signaling by pharmacological intervention will be addressed.
Resumo:
We present a mini-scale method for nuclear run-on transcription assay. In our method, all the centrifuge steps can be carried out by using micro-tubes for short time (5 min each) throughout the process, including isolation of transcriptionally active nuclei and purification of labeled RNA after synthesis of RNA in isolated nuclei. The assay can be performed using a small amount of plant tissue, which enables analysis of developmental changes in transcriptional status of given genes in a single individual plant. Successful results were obtained using the tissues of flower and leaf of petunia and embryo of pea, suggesting that the method is potentially applicable to a variety of plant tissues.
Resumo:
The KRAB-zinc finger proteins (KRAB-ZFPs) represent a very large, but poorly understood, family of transcriptional regulators in mammals. They are thought to repress transcription via their interaction with KRAB-associated protein 1 (KAP1), which then assembles a complex of chromatin modifiers to lay down histone marks that are associated with inactive chromatin. Studies of KRAB-ZFP/KAP1-mediated gene silencing, using reporter constructs and ectopically expressed proteins, have shown colocalisation of both KAP1 and repressed reporter target genes to domains of constitutive heterochromatin in the nucleus. However, we show here that although KAP1 does indeed become recruited to pericentric heterochromatin during differentiation of mouse embryonic stem (ES) cells, endogenous KRAB-ZFPs do not. Rather, KRAB-ZFPs and KAP1 relocalise to novel nucleoplasmic foci that we have termed KRAB- and KAP1-associated (KAKA) foci. HP1s can also concentrate in these foci and there is a close spatial relationship between KAKA nuclear foci and PML nuclear bodies. Finally, we reveal differential requirements for the recruitment of KAP1 to pericentric heterochromatin and KAKA foci, and suggest that KAKA foci may contain sumoylated KAP1 - the form of the protein that is active in transcriptional repression.